Maximal Net Baryon Density in the Energy Region Covered by NICA.

Jean Cleymans University of Cape Town, South Africa

107th session of the JINR Scientific Council, February 19, 2010

Stellenbosch Institute for Advanced Studies South Africa April 6 – 9 2010

http://hep.phy.uct.ac.za/dm2010 http://ht.physik.uni-frankfurt.de/~dm2010/home.shtml Organizing Committee:

J. Cleymans (Cape Town) A. Muronga (Cape Town) H. Oeschler (Darmstadt) A. Peshier (Cape Town) D. Rischke (Frankfurt)

◆□ ▶ ◆圖 ▶ ◆ 国 ▶ ◆ 国 ▶

	Equilibrium
π	$\exp\left[-rac{E_{\pi}}{T} ight]$
Ν	$\exp\left[-rac{E_N}{T}+rac{\mu_B}{T} ight]$
N	$\exp\left[-rac{E_N}{T}-rac{\mu_B}{T} ight]$
٨	$\exp\left[-\frac{E_{\Lambda}}{T}+\frac{\mu_{B}}{T}-\frac{\mu_{S}}{T} ight]$
$\overline{\Lambda}$	$\exp\left[-rac{E_{\Lambda}}{T}-rac{\mu_{B}}{T}+rac{\mu_{S}}{T} ight]$
К	$\exp\left[-rac{E_{\mathcal{K}}}{T}+rac{\mu_{\mathcal{S}}}{T} ight]$
ĸ	$\exp\left[-rac{E_{\kappa}}{T}-rac{\mu_{S}}{T} ight]$

æ

SPS data.

	Measurement		
Pb–Pb 158A GeV			
$(\pi^+ + \pi^-)/2.$	600±30		
K+	95 ±10		
K-	50 ± 5		
K ⁰ _S	60 ±12		
p	140±12		
p	10 ±1.7		
ϕ	7.6±1.1		
Ξ-	4.42±0.31		
Ξ-	0.74±0.04		
$\overline{\Lambda}/\Lambda$	0.2±0.04		

SPS data.

SPS: Freeze-Out Parameters:

 $T = 156.0 \pm 2.4 \text{MeV}$ $\mu_B = 239 \pm 12 \text{MeV}$

F. Becattini, J.C., A. Keränen, E. Suhonen and K. Redlich Physical Review C64 (2001) 024901.

AGS data.

	Measurement		
Au–Au 11.6A GeV			
Participants	363±10		
K+	23.7±2.9		
K-	3.76±0.47		
π^+	133.7±9.9		
Λ	20.34±2.74		
p/π^+	1.234±0.126		
p	>0.0185±0.0018		

AGS data.

AGS: Freeze-Out Parameters:

 $T = 130.6 \pm 5.5 \text{MeV}$ $\mu_B = 594 \pm 26 \text{MeV}$

F. Becattini, J.C., A. Keränen, E. Suhonen and K. Redlich Physical Review C64 (2001) 024901.

SIS data.

	Measurement			
Au–Au 1.7A GeV				
π^+/p	0.052±0.013			
K^+/π^+	0.003±0.00075			
π^-/π^+	2.05±0.51			
η/π^0	$0.018{\pm}0.007$			

SIS data.

SIS: Freeze-Out Parameters:

$$T = 49.7 \pm 1.1 \text{MeV}$$

 $\mu_B = 818 \pm 15 \text{MeV}$

J. C., H. Oeschler and K. Redlich) Physical Review C59, (1999) 1663.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・ロト ・四ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨ

A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772, 167, 2006 J. Manninen, F. Becattini, M. Gazdzicki, Phys. Rev. C73 044905, 2006 R. Picha, U of Davis, Ph.D. thesis 2002 J. Takahashi SOM2008

Chemical Freeze-Out: Criteria

Chemical Freeze-Out: Criteria

Chemical Freeze-Out: Criteria

イロト イ理ト イヨト イヨト

Chemical Freeze-Out

э

Chemical Freeze-Out Temperature

æ

Chemical Freeze-Out μ_B

æ

 μ_B as a function of $\sqrt{s_{NN}}$

$$\mu_B(\sqrt{s}) = \frac{1.308 \text{ GeV}}{1 + 0.273 \text{ GeV}^{-1}\sqrt{s}}$$

This predicts at LHC $\mu_B \approx$ 1 MeV.

J. C., H. Oeschler, K. Redlich, S. Wheaton Phys. Rev. C73 034905 (2006)

s/*T*³

J. C., H. Oeschler, K. Redlich and S. Wheaton, Physics Letters B615 (2005) 50-54.

・ロト ・個 ト ・ヨト ・ヨト 三日 -

Transition

Λ/π Ratio

THERMUS

S. Wheaton, J. Cleymans, M. Hauer

Comp. Phys. Comm. 180 (2009) 84-106

・ロト ・個ト ・ヨト ・ヨト ・ヨー

Strangeness in Heavy Ion Collisions vs Strangeness in pp - collisions

Use the Wroblewski factor

$$\lambda_{m{s}} = rac{2\left< m{sar{m{s}}}
ight>}{\left< m{uar{m{u}}}
ight> + \left< m{dar{m{d}}}
ight>}$$

This is determined by the number of **newly** created quark – anti-quark pairs and **before** strong decays, i.e. before ρ 's and Δ 's decay.

Limiting values : $\lambda_s = 1$ all quark pairs are equally abundant, SU(3) symmetry. $\lambda_s = 0$ no strange quark pairs.

Maxima in particle ratios : K^+/π^+

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Maxima in particle ratios : K^+/π^+

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへの

Maxima in particle ratios : K^+/π^+

R. Pisarski and L. McLerran

э

(日)

J.C., H. Oeschler, K. Redlich, S. Wheaton, Phys. Lett. B615 (2005) 50-54

In the statistical model a rapid change is expected as the hadronic gas undergoes a transition from a baryon-dominated to a meson-dominated gas. The transition occurs at a temperature T = 151 MeV and baryon chemical potential $\mu_B = 327$ MeV corresponding to an incident energy of $\sqrt{s_{NN}} = 11$ GeV.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 151 MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 151 MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 151 MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

Thermal Model

The number of particles of type *i* is determined by:

$$E\frac{dN_i}{d^3p} = \frac{g_i}{(2\pi)^3} \int d\sigma_\mu p^\mu \exp\left(-\frac{p^\mu u_\mu}{T} + \frac{\mu_i}{T}\right)$$

Integrating this over all momenta

$$egin{aligned} N_i &= rac{g_i}{(2\pi)^3} \int d\sigma_\mu \int rac{d^3 p}{E} p^\mu \exp\left(-rac{p^\mu u_\mu}{T} + rac{\mu_i}{T}
ight) \ N_i &= \int d\sigma_\mu u^\mu n_i(T,\mu) \end{aligned}$$

or

If the temperature and chemical potential are unique along the freeze-out curve

$$N_i = n_i(T,\mu) \int d\sigma_\mu u^\mu$$

i.e. integrated (4π) multiplicities are the same as for a single fireball at rest (apart from the volume).

