Maximal Net Baryon Density in the Energy Region Covered by NICA.

Jean Cleymans University of Cape Town, South Africa

107th session of the JINR Scientific Council, February 19, 2010

Stellenbosch Institute for Advanced Studies South Africa April 6 – 9 2010

http://hep.phy.uct.ac.za/dm2010 http://th.physik.uni-frankfurt.de/~dm2010/home.shtml

Organizing Committee:

J. Cleymans A. Muronga H. Oeschler A. Peshier D. Rischke (Cape Town) (Cape Town) (Darmstadt) (Cape Town) (Frankfurt)

È

メロトメ 御 トメ 君 トメ 君 トー

重

K ロトメ個メメ 差 トメ 差 トー

SPS data.

SPS data.

SPS: Freeze-Out Parameters:

 $T = 156.0 \pm 2.4$ MeV μ_B = 239 \pm 12MeV

F. Becattini, J.C., A. Keränen, E. Suhonen and K. Redlich Physical Review C64 (2001) 024901.

AGS data.

AGS data.

AGS: Freeze-Out Parameters:

 $T = 130.6 \pm 5.5$ MeV μ_B = 594 ± 26MeV

F. Becattini, J.C., A. Keränen, E. Suhonen and K. Redlich Physical Review C64 (2001) 024901.

SIS data.

SIS data.

SIS: Freeze-Out Parameters:

$$
T = 49.7 \pm 1.1 \text{MeV}
$$

$$
\mu_B = 818 \pm 15 \text{MeV}
$$

J. C., H. Oeschler and K. Redlich) Physical Review C59, (1999) 1663.

A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772, 167, 2006 J. Manninen, F. Becattini, M, Gazdzicki, Phys. Rev. C73 044905, 2006 R. Picha, U of Davis, Ph.D. thesis 2002 (ロ) (伊) → 君米→ 君子 J. Takahashi, SQM2008

€

Chemical Freeze-Out: Criteria

Þ

メロトメ 御 トメ 老 トメ 老 ト

Chemical Freeze-Out: Criteria

イロトメ 御 トメ 君 トメ 君 ト

Chemical Freeze-Out: Criteria

 $($ ロ) $($ \overline{p}) $($ \overline{z}) $($ \overline{z} $)$

Chemical Freeze-Out

Þ

Chemical Freeze-Out Temperature

目

Chemical Freeze-Out µ*^B*

È

 μ_B as a function of $\sqrt{s_{NN}}$

$$
\mu_B(\sqrt{s}) = \frac{1.308 \text{ GeV}}{1 + 0.273 \text{ GeV}^{-1} \sqrt{s}}.
$$

This predicts at LHC $\mu_B \approx 1$ MeV.

J. C., H. Oeschler, K. Redlich, S. Wheaton Phys. Rev. C73 034905 (2006)

s/*T* 3

J. C., H. Oeschler, K. Redlich and S. Wheaton, Physics Letters B615 (2005) 50-54.

K ロ メ イ ヨ メ ミ メ ス ヨ メ 「ヨ 」

Transition

Λ/π Ratio

THERMUS

S. Wheaton, J. Cleymans, M. Hauer

Comp. Phys. Comm. 180 (2009) 84-106

目

(ロ)→(個)→(理)→(理)→

Strangeness in Heavy Ion Collisions vs Strangeness in pp - collisions

Use the Wroblewski factor

$$
\lambda_{\bm{s}}=\frac{2\left\langle \bm{s}\bar{\bm{\mathsf{s}}}\right\rangle }{\left\langle \bm{u}\bar{\bm{u}}\right\rangle +\left\langle \bm{d}\bar{\bm{d}}\right\rangle }
$$

This is determined by the number of **newly** created quark – anti-quark pairs and **before** strong decays, i.e. before ρ's and ∆'s decay.

Limiting values : $\lambda_s = 1$ all quark pairs are equally abundant, SU(3) symmetry. $\lambda_s = 0$ no strange quark pairs.

Maxima in particle ratios : *K* ⁺/π⁺

É

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Maxima in particle ratios : *K* ⁺/π⁺

(ロトメ部) (文書) (文書)

Maxima in particle ratios : *K* ⁺/π⁺

È

(ロトメ部) (文書) (文書)

R. Pisarski and L. McLerran

Þ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

J.C., H. Oeschler, K. Redlich, S. Wheaton, Phys. Lett. B615 (2005) 50-54

In the statistical model a rapid change is expected as the hadronic gas undergoes a transition from a baryon-dominated to a meson-dominated gas. The transition occurs at a temperature $T = 151$ MeV and baryon chemical potential $\mu_B =$ 327 MeV corresponding to an incident energy of $\sqrt{s_{NN}} = 11$ GeV.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature $T = 151$ MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature $T = 151$ MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature $T = 151$ MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

Thermal Model

The number of particles of type *i* is determined by:

$$
E\frac{dN_i}{d^3p}=\frac{g_i}{(2\pi)^3}\int d\sigma_\mu p^\mu\exp\left(-\frac{p^\mu u_\mu}{\mathcal{T}}+\frac{\mu_i}{\mathcal{T}}\right)
$$

Integrating this over all momenta

or

$$
N_i = \frac{g_i}{(2\pi)^3} \int d\sigma_\mu \int \frac{d^3p}{E} p^\mu \exp\left(-\frac{p^\mu u_\mu}{T} + \frac{\mu_i}{T}\right)
$$

$$
N_i = \int d\sigma_\mu u^\mu n_i(T, \mu)
$$

If the temperature and chemical potential are unique along the freeze-out curve

$$
N_i=n_i(T,\mu)\int d\sigma_\mu u^\mu
$$

i.e. integrated (4π) multiplicities are the same as for a single fireball at rest (apart from the volume).**K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君**

