

Объединенный институт ядерных исследований ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

им. Н. Н. Боголюбова

Семинар "ТЕОРИЯ АДРОННОГО ВЕЩЕСТВА ПРИ ЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ"

Руководители: Э.-М. Илгенфритц и О. В. Теряев

Семинар состоится в

среду 20 февраля в <u>14.00</u>

в аудитории им. Д. И. Блохинцева (4 этаж ЛТФ)

Yu. B. Ivanov

(Kurchatov Institute, Moscow)

Heavy-Ion Collisions within Multi-Fluid Simulations: Scenarios with and without Deconfinement Transition

Simulations of relativistic heavy-ion collisions within the three-fluid model, employing a purely hadronic EoS and two versions of EoS involving the deconfinement transition, are presented. The latter are an EoS with a first-order phase transition and another with a smooth crossover transition. The analysis is performed in a wide range of incident energies 2.7 GeV $\leq \sqrt{s_{NN}} \leq$ 39 GeV in terms of the center-of-mass energy. First results of these different scenarios are compared with available experimental data. Scenarios with a deconfinement transition look preferable at high incident energies $\sqrt{s_{NN}} \geq 5$ GeV. It is found that the predictions within deconfinement-transition scenarios exhibit a "peak-dip-peak-dip" irregularity (in the dependence on the incident energy) of the form of the net-proton rapidity distributions in central collisions. This irregularity signals the onset of deconfinement occurring in the hot and dense stage of the nuclear collision.

Секретарь семинара: Я.Н. Клопот (klopot@theor.jinr.ru)