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In the first part of the review we discuss the effective nonlocal approach in the
quantum field theory. It concerns primarily the historical retrospective of this approach,
and then we concentrate on the interaction of matter particles (fermions and bosons) with
the (Abelian and non-Abelian) gauge fields. In the second part of the review we consider
the hadronic corrections (vacuum polarization) to the anomalous magnetic moment of the
muon g — 2 factor discussed within the SUy(2) nonlocal chiral quark model. This is
considered in the leading and, partially, in the next-to-leading orders (the effect of the
fermion propagator dressing due to pion field) of expansion in small parameter 1/N. (NN
is the number of colors in QCD).

B nepBoii u ctu 0630p MblI 00cyX eM 2(h(heKTUBHBII HEJIOK JIBHBINA MOAXOI B KB H-
TOBOI Teopuu noins. M3/oxeH HCTOPUS 3TOTO MOAXOM , U JI H BBIBOJ B3 MMOJIEHUCTBUSI U -
ctui M tepud (pepMuoHOB U 6030HOB) ¢ ( GeneBbIMH U He OeneBbIMH) K JTMOPOBOYHBIMH
nonsamu. Bo Bropoit 4 cti 0630p MbI p CCM TPUB €M JPOHHBbIE BKII bl (B KYyMHOIl 1O-
JIpU3 UMK) K HOM JIbHOMY M THUTHOMY MOMeHTY MoH ¢ — 2 B SU;(2) Henok JibHOM
KUD JIbHOW KB PKOBOMl MOjed. DTH BKJ JIbl P CCMOTPEHBI B JIMAMPYIOIIEM M, 4 CTHYHO,
B CJIEQyIOIIEM 3 JIMIUPYIOIMM Nopsaiak X (3¢pexT ones HuSA hepMHOHHOTO HPON T TOP
IIHOHHBIM I10JIEM) P 3II0XeHHUs 1o M jioMy 11 p Metpy 1/N. (N, — uucno useros B KXJI).

PACS: 12.39.Fe; 13.40.Em

INTRODUCTION

The Lepton Anomalous Magnetic Moment. The quantum mechanics pre-
dicts the gyromagnetic ratio g for the charged point-like fermions with spin 1/2
equal to 2. In relativistic quantum theory this fact is direct consequence of the

*E-mail: dorokhov@theor.jinr.ru



700 DOROKHOV A.E. ET AL.

Dirac equation. From the quantum field theory (quantum electrodynamics (QED)
in that time) formulated by R.Feynman, J. Schwinger, and S. Tomonaga, there
follows the existence of virtual particles, leading to the so-called vacuum polar-
ization effects. The most famous examples of these effects are the Lamb shift in
the hydrogen atom levels and the appearance of the anomalous magnetic moment
of the electron. These effects were predicted and confirmed experimentally almost
at the same time.

In QED the general form of the interaction vertex of fermions (with incoming
and outgoing momenta p and p’, correspondingly) with photon of momentum
g =p' — p reads as (see, e.g., [1]):

i qy

- By(q®), p?=p?=m? (1)

T(p,p') = v F1 (%) +

where F; and Fb are the Dirac and Pauli form factors, respectively, o¢#¥ =

%(’y“’y" — y¥~4*). At tree level for the charged point-like fermions, one has

Fy =1, F;, = 0. In QED it is possible to get the relation between the form
factors F1(0) = 1, F5(0) and the gyromagnetic ratio g,

g =2[F1(0) + F2(0)] = 2 + 2F5(0). 2

Thus, a new quantity, the anomalous magnetic moment (AMM) a = F5(0) =
(g — 2)/2, appears. In quantum field theory a # O due to internal structure of
fermions emergent from the virtual radiative corrections.

The AMM of the leptons (electron or muon) is one of the most accurately
measured and theoretically studied quantities in the elementary particle physics.
The interest to this problem is motivated by our wish to understand the most
delicate features of our microworld at its boundary and extension beyond the
modern knowledge. The simple rule [2,3] is that the effect of the second-order
contribution to AMM of the lepton a; with mass m; due to a possible particle
exchange of mass M is proportional to

ay o< (my/M)>?. A3)

Thus, sensitivity of the muon to hypothetical interaction with the scale M is 40000
times higher than that of the electron. This fact compensates a less experimental
accuracy of the measurements of the muon AMM and makes this study more
perspective from the point of view of search of new physics.

Recent experiment E821 at the Brookhaven National Laboratory (BNL, USA)
got the muon AMM with very high precision [4]:

as™ = 659208.0(6.3) - 10~ . “)
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In the near future it is planed to increase the experimental accuracy by a factor
of 4 in new experiments at FermiLab (USA) [5] and JPARC (Japan) [6]. The
standard model predicts the number

atfo™ = 659179.0(6.5) - 10~ (5)

that differs from the experiment by 3—4 standard deviations (depending on theo-
retical estimates of different groups).

Hadronic Contribution. The theoretical error in (5) is dominated by the
contribution of the strong interaction to the muon AMM (Fig. 1). In the leading
order (LO) in the fine coupling constant « this is the hadronic vacuum polarization
(HVP) contribution, and in the next-to-leading order (NLO) this is the iterations
of the HVP and the contribution from the light-by-light (LbL) process.

The HVP contribution to a,, is given by the expression

1
1—2)(2
aHVP:g/dx( z)(
0

K 2

where m,, is the muon mass, D(Q?) is
the Adler function defined as the logarith-
mic derivative of the photon polarization

operator Sl (Q2 )
2y

From Eq.(6) it is clear that a), ¥ is deter-

mined by the behavior of the Adler function
in the low-momentum region, of order of
the muon mass m,,. The simplest expression
for the relation between the AMM and the
Adler function at zero momentum obtained
in [7] is

2 2 2
HVP _ (g) mz‘” [D(Q )

M T

3

Fig. 1. The diagram for the hadronic
Q2 . vacuum polarization contribution to
Q?2—0

a

the muon AMM. The muon is the solid

L . de in diff line, the photons are the wavy lines,
ater on, new estimates were made in diffe- . 4 ¢he external wavy line is the inter-

rent model approaches: the nonlocal con- ,.tion of the muon with the magnetic
stituent quark models [8, 9], the Dyson— photon with momentum ¢ — 0. The
Schwinger approach [10], the local consti- hatched circle is for the HVP
tuent chiral quark model [11], and some
others.

In this work, we consider some details of the nonlocal chiral quark model
that allows one to interpolate the chiral physics from low to large momenta.

(®)
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The Nonlocal Chiral Quark Model (NyQM). The partially bosonized action
of the SU(2) x SU(2) nonlocal chiral quark model (NxQM) is written as [12]:

S = /d4x{q(m) (zé —me+ V(z) + A(m)%) q(z)—
1

(7(2)? + 0(2)?) + o (p2(2)? + 0 (2)?) +

26, 2G5

b B [ e fo) fa)Qe — 01,2) DiQUayn + )

®;=0,m,p,w,a1

)

with ¢(x) = {u(z),d(z)} being the fermion fields of the u and d quarks,
Q(z,y) — the corresponding guaged quark fields

Y

Q(z,y) = Pexp —i/dZ“(Vi(ZHAZ(Z)%)T“ qa(y),

’ (10)
Yy

Q(z,y) = q(x)Pexp fz/dz“(Vlf(z) — AL (2))T" 5,

x

Vi (z) and {12(2) are external vector and axial-vector fields, respectively (the

notation is V' = Vv, = Viy#T*); T represents the generators of the flavor
group; P is the ordering operator of 7 along the integration path in every term
of the Taylor series of the exponent; m, is the current quark mass; o, 7, p, w,
a1 are the boson fields for the mesons. G; and G2 are the coupling constants
determined by experimental input for the masses and other low-energy properties
of the light mesons. f(z) is the form factor of the nonlocal interaction with the
characteristic nonlocality parameter A. The spin-flavor matrices I'; for mesons
are given by

Ip=1, TI'Z =iyt Ii*=Atr" TL=7" T =mwy"7" A1
where 7% stands for the Pauli matrices.

The action (9) contains the gauge-invariant interaction of quarks and mesons
with external fields. At small momenta the action takes into account the nonper-
turbative structure of the strong interaction, as it follows from the instanton liquid
model or the Dyson—Schwinger approach. The nonlocal action interpolates the
physics of low momenta to the region of large momenta, where the nonlocality
disappears and one has only free current quarks. Note that due to the Schwinger
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path-ordered exponent factor (10), the action (9) generates the contact interaction
of quarks and mesons with any number of photons (see discussion in the next
Section).

The scalar field ¢ has nonzero vacuum average oy. Thus, if the external
fields are switched off (A, V' = 0), the effective action (9) may be integrated in
quark fields. The action obtained has a nontrivial extremum derived by variation
of the action in the o field and equating the variation to zero. Such a condition
is the so-called gap equation that has the nontrivial solution. In momentum space
the gap equation reads

@k f2(k)ym(k)
(2m)* k2 —m2(k)’

m(p) = me + iGNy NA0) [ (12
where N, and Ny are the number of colors and flavors, respectively. The
nontrivial solution of the gap equation (12) means spontaneous violation of the
chiral symmetry. The pion becomes massless in the chiral limit m, = 0, and
the current quarks become the dynamical quarks with the (inverse) propagator
given by

S~ (p) = p— M(p). (13)

The solution of the gap equation (12) is

m(p) = me — o0 f*(p) = me + (m(0) — me) f*(p) = me +maf(p),  (14)

where m, is the dynamical (constituent) quark mass.
The meson propagators are the solutions of the Bethe—Salpeter equations [13]:

1

Do’ﬂ' i — )
b (p) Jg’,ﬂ'(p) _ Gl—l

. (15)
Jon(p) =i / %F(k)ﬁ(kﬁ T [S(k_)TonS(ks)Ton]

where k_ = k — p/2, ky = k + p/2. The meson mass with particular quantum
numbers corresponds to the pole of the meson propagator Jy - (My ) = Gfl.
The vector meson propagators have the transverse and longitudinal parts

DL, 0y (p) = TH D g, () + L Dis .0 (P), (16)

w,p,ai w,p,ai

where the transverse and longitudinal projectors are introduced by

T =gt —ptp[p?, LM = ptp” [P, (17)
1 1
Dz; a\P) = ) DuL) ay — ’ (18)
v S G T O T G A T )
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with JI' (p) and JL _ (p) being the transverse and longitudinal parts of the

w,p,a1 w,p,a1

quark loop

v . d4k v
J(ﬁ,p,al (p) = Z/ (271')4 f(k*>2f(k+)2 TI' [S(k*>rg7/)7a1S(k‘F)Fw,p,U«J : (19)
At physical values of masses for the vector mesons, one has the pole condition

J5 (Mo pay) = =G5 (20)

w,p,a1

Also, note that within the nonlocal model, one has the mixing of the pseudoscalar
and axial-vector fields due to the additional nondiagonal quark loop transition

4
Thas®) =1 [ G PO P Te[S(TSGTL]. @D
Formally, the models have two small parameters: the chiral parameter ratio
M(0)/47 fr and the inverse of color number 1/N.. The color counting rules
reduce to the following: the quark loop gives the factor N., and each meson
propagator is suppressed by 1/N, factor.

The SU(2) model contains five parameters: the current quark mass m., the
dynamical quark mass mg4, the nonlocality parameter A, and the scalar G; and
vector G5 coupling constants. The gap equation (12) relates the parameters m,,
mgq, A, and G; with each other. The couplings G; and G, are fitted by physical
masses of the pion and p meson, respectively. One more parameter is fixed,
e.g., by the pion decay m° — 7. Thus, one parameter remains free and may be
varied.

1. THE MODEL OF MINIMAL ELECTROMAGNETIC INTERACTION
IN THE NONLOCAL MODELS

1.1. The Kroll Construction and the Kazes—Chang—Mani Identities. The
Feynman rules for interaction of photons with quarks and the Goldstone bosons
are known since 1991 from the work by J. Terning [14]. To derive these rules,
he used the effective gauge-invariant action similar to that written above (9).
The properties of the Schwinger exponent were crucial for this derivation, and
specific path-independent formalism was used. The similar results were obtained
earlier by K.Ohta for the photon interaction with extended nucleon [15]. The
Terning rules were also rederived, e.g., in [16] for the nonlocal quark model
and in [17] for unparticle model, basing on the nonlocal action and using similar
to Terning’s methods. The aim of this Section is to give alternative method of
derivation based on the work by N.Kroll [18] published in 1966. The value
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of this derivation is the fact that only the form of the quark propagator (or
quark—pion vertex) within the nonlocal model is needed. The Kroll’s work is
based on the question: if one modifies the fermion propagator, then how to get
the gauged fermion—photon vertex? This question was raised in some previous
works [19-21]. Other important results on gauging of nonlocal models were
obtained in [10,22,23] and some other works.

It is important that all nonlocal models have formally the same general
structure of the fermion propagator

S&'(q) = Alg)g — B(g). (22)

In order to get the minimal interaction, we shall use the operator formalism
based on the Kroll construction [18]. First, we replace the momentum variable
g, by four noncommuting operator variables z, and introduce the shift operator
Uy = e kud" acting as

U, 2, U = 2, + Ky (23)

Next, we define formally the operator dﬁ on the functions F' of variable z

nudiF(z) = lim U; ! Pz +enly) = F(2)] (24)

e—0 3

where n,, is a unit four-vector. Note that after all dﬁ operations are performed,
one needs to return the operator-valued quantity z to the momentum variable q.
The important properties following from the definition (24) are

diF(2) G(z) = [dEF(2)] G(2) + F(z + k) d; G(2), (25)
drF N (z) = —F Yz + k)L F(2)] F'(2), (26)
diF(z) G(z) #d’“ (2) F(2). (27)

The last property is due to noncommutativity of variables involved. Let us prove
the first relation. By definition one has

n, dﬁ[F(z) G(2)] = lim U~ 1 [F(z +enUy) G(z + enlUy) — F(2) G(2)

e—0 e

It is clear for infinitesimal shifts that

F(z+enUy) G(z + enUy) =
= F(z+enlUy) G(z) + F(2)G(z + enUy) — F(2) G(2).
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Then, the numerator transforms as

U, [F(z 4+ enUy) G(2) + F(2) G(z + enlUy) — 2F(2) G(2)]
= U, ' [F(z +enlUy) G(2) = F(2) G(2) + F(2) G(z + enUy) — F(2) G(2)] =
= Uy ' [F(z +enlUy) — F(2)]G(2) + Uy 'F(2) [G(2 +enlUy) = G(2)] =
={U; ' [F(z +enlUy) — F(2)]} G(2)+

+ F(z+ k) {U; ' [G(z + enUy) — G(2)]},

and Eq. (25) follows. The second property is proved analogously.
The minimal electromagnetic interaction of the fermion with propagator (22)
with n photons is defined recursively

Vﬂl ----- #n(z;klv"'akn):dﬁzvﬂl ----- #n—l(z;kla"-aknfl)a 28)
(
Vil(z, k) = d S5 (2),

where ki,...,k, are the momenta of photons, Sg is the particle propagator.
The vertices defined in (28) satisfy the Kazes—Chang—Mani identities (KCMI)
(generalized Ward-Takahashi identities) [20,21]:

k#"VHI #n(Q;klw-'akn):

.....

- ‘/;41,...,”",1 (q + kna kla ey kn—l) - ‘/;41,...,”",1((]; kla B kn—l) (29)

or

V,ul ..... un,l,)\(Q; kla'-'aknflao) = 5 VYui,..., unfl(Q; kla"-akn71)~ (30)

This construction reproduces the standard rules for the local interaction of n
photons with charged particle (fermion or scalar). Note also that very similar
procedure was used later by H. Haberzettl in [24], where a “gauge derivative” was
introduced with exactly the same properties as they followed from the properties
of the operator dﬁ.

1.2. The Application of the Kroll Construction to Derivation of n-Photon
Vertices. Let us consider the action of the operator dﬁ to the simplest but
important cases, the powers of variable z. One gets

dﬁzu = Uk_la,uzuUk = Guv,
dﬁ QZdZZUZ”:zH+(z+k)“: (22 + k), an
(z+ k)t — 24

di2t = (22 + k), [(2 + )2+ 2%] = (22 + R ey L

m

(Z + k)Qn _ ZQn

k  2n __
d,z"" = (22 + k), (z + k)2
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Note that at this point we do not fully coincide with the original Kroll’s work.
He considered the variables z as the Dirac matrix value 2z, = Zv, + v.2.
With this prescription we get, e.g., dﬁz2 = dﬁz,/y,,zpfyp =2z, + l;:’y#. (As we
see below, another important prescription that we add to the Kroll construction
is symmetrization of the factors depending on z. This prescription leads to
commutativity of factors in Eq. (26).) Moreover, in [18] (see also [25]) only local
propagators were considered as examples.

From (31) it follows that the action of dﬁ on the functions that have the
expansion F(z) = 3" ¢,2?" reduces to

dEF(z) = (22 + k), Pzt k) = F(z) 32)

(z+k)2—22
The important example of this relation is the exponential function

—a(z+k)? _ —az?
ko —az? . e (§] -
dy e =224k, (z+k32—22

=22+ k)u(—a)/dt exp [—a (t(z + k)* +t2°)], (33)
0

where £ =1 — 1.

The one-photon vertex is obtained immediately from (32). The only subtle
point is that the action of d, (k) on 2A(z) and A(z)Z produces different results,
both satisfying the KCMI and thus being gauge-invariant. To obtain physically
correct result, we need to consider the symmetrized expression:

g A()2+2A(z) 22+ k), Alz+k)—A(z) .  A(z+Ek)

2 -2 (z+k)2Z—z2 ~ g T
A(2) 54k Alz+k) — A(z)
_A(z) + Az + k) 22+ k Alz+ k) — A(z)
= 5 ’yu B (22 k)um (34)

This corresponds to the kinetic part of the propagator. The scalar part generates
the vertex by simple substitution F' — B in (32).
The final result for the one-photon vertex in the minimal approach becomes

Alg) + Alg + k)

Ff(q,k) = 9 Yut
2q + k Alg + k) — Aq) B(q+k) — B(g)
+ (2¢ + k)um — (2 + k), CENSEETE (35)
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where k is the photon momentum, ¢ is the momentum of incoming quark. This
result agrees with [14,22]. It is easy to check that this vertex satisfies the Ward—
Takahashi identity

kTG (q,k) = (k+§)A(k+q)— M (k+q)—kA(k)+ M (k) = Sg' (k+q)—Sg" (k).
(36)

1.3. Derivation of Two-Photon Vertex. To obtain the two-photon vertex

in accordance with the Kroll construction, we need to calculate d’,jl dﬁF(z) At
this step the ordering of factors becomes important (see Fig.2). This is one
more prescription that one should add to the Kroll construction in order to treat
the non-Abelian models. We find that the most convenient way is to use the

« representation
o0
2

F(z) = /da Fa)e ** . 37)
0

By using (33) we get the correct ordering
1 00
2 7.2
diF(z) = /dt/da(—a)F(a)e—“t<z+k> (22 + k) e~ (38)
0 0

This expression written in the « representation is equivalent to (32).
Acting on the integrand (38) by the second operator d* , we get

dff/ e_at(z'*'k)z} (2z+k), ootz + e at(z+k+k))? {dff/ (2z+k), e_afZZ} =
1
= (224 2k+K),(—at) / dt' exp [—at (V(z+k+ k) +¥ (2 + k)?)] x
0
X (22 + k), e @ 4 ootz R { [d5 (22 + k), ] e +

+ (22 + 2K + k) ud¥ e-afzz} = (224 2k + K),(—at)x
1
x /dt’ exp [—at(t'(z+ k+ k) +T(2+k)%)] 22+ k), et |
0
o HEHREED (95 4 ok 4 k), (22 + k'), X

1
x /dt’(faf) e I AR 4 9g  emat(zHiik)—alz? (3
0
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Fig. 2. Figure shows that one needs 1 " " "
to order the o; parameters and the
charge matrices 7; from the right I I I I

(the initial state) to the left (the fi- | Y | 4
nal state) in accordance with mo- o o o o

k Ky ky k k
mentum flow. The double dashed noou el el n I
lines are for photons or mesons, the <« ! ! —
solid line is for a quark T, T3 T, Ty

Now, integrating this expression with the weight (38), we obtain for the
first term

/ dt]oda o) (—at)x

0o 0
1 1
x/dt’exp[ at(t'(z+k+K)+T(z+k)) — atz?] /dtx
0 0
[e%e} 1 _ _
,d exp[ at (U(z+k+K)?+t(z+k)?) —atzﬂ
x [ da(— dt =
dt’ (z+k+k)2—(2+k)?
0 0
L x e—at(z+k+k')2—afz2 _ e—at(z+k)2—afz2
= [ dt | da(—a)F =
/ / =) O e = b
0o 0
B 1 Flz+k+k)-F(z) F(+k) —F(2)
(kR —(z+ k)2 | (z+k+E)2— 22 (z+k)2—22 |’

for the second term
1

1 o]
/dt/da(—a)F(a)/df' e_“t(z+k+k/)2(—af) o[t (xR 42
0o 0

0
1 o0 T +k')2 722
_ Cat(a ki k)2 e —e
f/dt/da(fa)F(a)e ( ) CrRE—=
0o 0
B 1 Flz+k+k)-FEz+kK) Fl+k+k)-F(2)
()2 =22 | (2 k+E)?— (24 K)? (z+k+k)2—22 |’

(41)
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and for the third term

1 00

_ ne_oi2 Flz+k+k)—F(2)
dt da F at(z+k+k")*—atz — )
/ / aF(o)e (c+E+ k)7 =22

0 0
By using the notation for finite differences
F(k) = F(ks)

F(l) (kla k2) = L2 L2 ;
1~ M2
(42)
FO(ky, k3) — FD (ky, ko)

F(Q)(klakQ;kS) = kQ — kQ 5
3 2

the result becomes
d’;,dﬁF(z) =g FO+k+ K, 2)+
+ 2242k 4+ k), 2z + k) FO 4+ k+k, 24k 2)+
+(p vk k). (43)
Let us transform identically the second term in (35) to

22+ k N Alz+ k) — A(z)  22+k

22+ k
2 k
2 (224 k), (z+ k)2 — 22 I

4

dr A(2) + [df A(2)]

and then act by d¥’

' [(22 + k)dEA(2)] = 2y, [dE A(2)] + (22 + 2k + k) d¥ dE A(2),
(44)
d¥ [d5A(2)] (25 + k) = [d’;’ dﬁA(z)} (25 + ) + 24 A(z + Ky,

As a result, we get the two-photon vertex
G _ e 1
(0 b K') = (20 + Ky AW (g + K, )+
+ L2+ 2k + K), AV (g + b+ K g+ k)+

20+ k + K
4TI o AD (gt k+E q) + (2q+ 2k + k), (20 + K)ux

x AD(q+k+k,q+kq) —guBY(q+k+k,q) -

—(2q+2k+ ), 2+ k) BP(q+k+ K g+ k. q) + (n vk = k).
(45)
It satisfies the KCMI
v G _ G G
K I’W(q, k, k") =T, (q—i—k’,kz)—I‘u (g, k). (46)

If we put in (45) A =1, the vertex agrees with that obtained in [14].
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1.4. Derivation of the Quark—Pion-Photon Vertex. Let the quark mo-
mentum be k, the pion momentum be p, and the photon momentum be q. The
quark—pion vertex in the Terning model [14] is

FT(k,k +p) = ?wﬂmfa(Mk + Mity). (47)
q

Then, by the Kroll construction, the quark—pion—photon vertex is trivially
reproduced [14]:

MkJrq - Mk

B (Myc + M) = 7°Q(k + ) g 57

Mitprq = Myip

+ Q7 (2(k+p)+ . (48
QT (2(k +p) Q)#(k+p+q)2_(k+p)2 (48)
In the instanton model the quark—pion vertex is
FL (kk+p) = %mgan Frifr. (49)
q

The ordering of f is important! Then, by using the Kroll construction, one has

dZ(karpfk) = (deker)fk + fk+p+q(dek) =

a fk - fk
= T"Q fr4ptq(2k + q)ume

FOT 2k +p) ), 7 JZCTZSlz_f(kl;i p?

= 7°Q(2k + @) frapraf P (k3 ) + Q7 2(k +p) + q), fu SV (k +p; q)-

It corresponds to the previous work [26].

After studying these simple examples, we are able to consider the general
quark—pion vertex

F9(k,k+p) = ?wﬂmg,fanG (k2,p%, (k + p)?) . (50)
q

First, write formally the function G as the 3-variable « integral

oo

G (K.p%, (k+p)?) = / dadf dyg (o B,7) e [em0" emok | (51
0
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As in the previous example, the ordering of the exponents is important. Now,
apply the operator df, to exponents and use (33):
2

d? o=V (k+p)? o =Bp? (—ak® _ Q)N [dz e—v(k-i-p)z} o BP? gmak® |

+ 5 (@A = AQ)e ki [t oA | ook y

|~

+22Q e (ktpt)? o= 6p? [dg e*a’ﬂ -

2

1
= QA | (2(k +p)+q)u/dt(—7)e*”[t(“”*q’Z*f(’””)z} e PPt emak |
0

1
+ % (QA" = X°Q) e 740”1 (2p + g),, / dt (— ) e P+’ +1w)] | gmak®
0

1
+2*Q o~V (k+p+a)? —06p* (2k +q), / dt (—a) o—lt(k+q)*+k?]
0

Put this back to (51), use (33) as a finite difference and return to the momentum
representation. Then, we get the vertex in the form

2 2 2
dlG(k*,p*, (k+p)°) =

G(k2ap2a (k +p + q)2) - G(k25p2a (k +p)2)

= QN (2(k+p) +q)pu Ftpta?—(htp? +
1 oxa_ya Gk, (p+q)*, k") — G(k*,p*, k)
+5 QA" = X"Q)(2p + ) TR
a G((k +q)*,p* k) = G(k?, p*, k)
+ AQ(2k + q), e )

This result agrees with that obtained by K.Ohta in [15], where the nucleons
were considered as fermions. He applied this result to the study of the pion
photoproduction. Note, the first term corresponds to the u-channel exchange, and
the second and the third ones to ¢- and s-channel exchanges, respectively.

The quark—two-pion vertex in the Terning model [14] is

FI (kk+p) =

2 _{ab}

T T

—_ (—?\4 Q) > (My, + My p1 + Miypz + Miipripe) . (52)
q

Acting by the Kroll operator, we reproduce Eq. (33) in [14] up to isospin matrices.
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2. THE LEADING CONTRIBUTION TO THE MUON AMM

2.1. The Polarization of Vacuum through the Quarks. In the leading order
of expansion in the small parameter 1/N,, the quark vacuum polarization is given
by the sum of two diagrams [9] (Fig. 3):

—iN, / T (T, (s b )SOb )T (k) S(E )} +

TN, / T (T (kg —0)S(R)}, (53)

where the vertices I',(ky,k—) and T, (k, q, fq) are defined in (35) and (45).
Contracting (53) with transverse projector (17), one gets the polarization operator

2) 4ZN/ kY Q2
27T4D+D

2
i

{m+m — k+l€7 + 3

+§ki[<m<”<k+7k—>>2<m+m- ko) = (n(h k)] b

81N d*k m 4
ZQQ/ 27'(' 4 Dk |: ;€+ gm@)(k,k,k’+q):| ) (54)

kL (kQ) kf_ — 52— (kq2)

, Dy = k* —m? is the denominator of quark

propagator S ( ), and we introduce the notation Fy = F'(ky).

2.2. The Contribution of Intermediate Vector Mesons. In addition, there
is a contribution with intermediate states with quantum numbers of pg or w
mesons. The photon—meson vertex in Fig. 4, a is defined by a sum of two diagrams
(Fig.4,b and Fig. 4, c):

) , d*k .,
I pow(@) = ZNc/(QTy;{Tf [S4T" (ks k) STy (ks k)] +
+Te D4 (K g, ~0)Si] |, (59)

where the vertices are

/)[) w(kJrv k_ ) f(kJr)f(k*)’yn’MTPo,w (56)
and
e Lk, q,—q) = —evu [f U (k, k + @) f(k) 2k + )* QT ot
+ O (k= @) f(k)(2k — )" T, Q. (57)
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—O—

Fig. 3. Dispersion (a) and contact (b) diagrams

o» W «_/\/«,O: ( )
’VV\.¢.‘VVM
b c

Q

Fig. 4. The diagrams for the v — p interference

The vertex (55) has transverse structure

qurfytipo,w (q) = 0) (58)

and thus selects the transverse part of the meson propagator in the polarization
operator

_ DT (q)FT (q2)2

IT, (q) o ;;”0’“ . (59)
After simplifications one gets
1 B?
(g) = & D (60)
q G2 - Jpo,w (q)
. d*k [ fif-
Bu(q) = 4@Nccpo,w/ (27T)4 |:D+D miym_ — k+l€_+

2. 2 (1) 4.5 Ju (1)
+3R 1= (2 b)) V] ) =g 5O k)| (6D
Cpyw = Tr[(3+1/3)/2-73] = 1 for the po meson and Tr [(T3+1/3)/2-1] = 1/3
for the w meson. Cp, ., is a result of the trace in flavor. From that it is clear

that the contribution to F»(0) from the w meson is suppressed by a factor 1/9
comparing with the pp-meson contribution.
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Note that B, (0) = 0. After performing the Wick rotation in (61) one gets
r 1
B,(0) ~ /dk LJ;’; <m2 + k- 51& [1 +2mkm§€]> + k2= i fk} . (62)
0

The third term under integral may be integrated by parts by using D}, = 1+2mm/,:

Juerthe [t )

0

oo o0

k2 k221+2 /
—/deD—kf,er/def,f( LA 2mmy 6
0 0

> D?

After substitution in (62) the integrand becomes identically zero.

2.3. Numerical Results. We choose the nonlocal form factors f(p) in the
Gaussian form

flp) = e P/ (64)

where A is a nonlocality parameter. The nonlocal form factors (64) not only
reflect the nontrivial nature of QCD vacuum, but, at the same time, serve as
regulators to make quark loop integrals finite in ultraviolet region.

The contribution to the muon AMM from the quark vacuum polarization is
shown in Fig. 5, with the dynamical quark mass being varied in the interval from
150 to 400 MeV.

e o e e L
.

LI I I
AEEEPUNEE NN NN NN

.’0000000’...

] i AN BRI B SR S
0.15 0.20 0.25 0.30 0.35 0.40

mgy, GeV

Fig. 5. The solid line is the contribution to a, of the quark polarization vacuum, calculated
in terms of the spectral function obtained in the experiment [27,28]



716 DOROKHOV A.E. ET AL.

Table 1. The model parameters and the values of contribution to the muon AMM of
vector mesons in the leading in 1/N. order

Me, MeV | mg, MeV | A, GeV | G1, GeV™2 | G2, GeV ™2 | ap, - 10° | a,, - 10*°
7.6 300 1.04 32.7 —4.27 3.1 3.44
8.2 310 0.99 37.1 ~5.23 3.43 3.81
8.8 320 0.95 41.8 —5.81 3.44 3.82
9.4 330 0.91 46.9 —6.14 3.27 3.63
10 340 0.87 52.4 —6.19 2.98 3.31
11 350 0.84 58.2 —5.87 2.55 2.84

The contribution of the vector mesons depends on the coupling G2 (Table 1),
the value of which is determined from (20). The corresponding integral becomes
divergent in time-like region when the effective quark mass becomes mg, <
Mpyw/2. It means unphysical creation of quark—antiquark pair. This problem
may be solved by several ways. One way is to introduce the infrared cut-off for
the loop integral. In this work, we use another method when the quark propagator
is replaced by the so-called “confining” propagator, which does not have poles
in physical time-like region. In this case, the dynamical quark mass m(p) is

defined by

(p? is in the Euclidean metric),

(o) = % mE 17 o (~(77 + mE)/A)
T e (-2 /A7)
(65)

Q) x 10*

0 0.5 1.0 15 20 25 3.0
Q, GeV

Fig. 6. The polarization operator (60) for the po meson with m. = 8.8 MeV, myq =
20 MeV, A = 0.95 MeV, G2 = —5.81 GeV 2
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and we have condition mg = A. For some set of parameters it is possible to get
the finite result in the more simple case

m(p) = me +maf?(p),

(66)
d'km(k)f* (k)
M)A k2 + m(k)?

mq = 4G1N0Nf /

The muon AMM is calculated from the expression

I 2,..2
0y = 40> 3" Qf/dxu )T <Tfm> . 67)

0

The function B(q) is determined by the transition vertex y — p. Its behavior
for one set of parameters is shown in Fig. 6.

3. NEXT-TO-LEADING IN 1/N. CORRECTION
TO THE QUARK VACUUM POLARIZATION AND TO THE MUON AMM

3.1. Next-to-Leading in 1/N. Correction to the Quark Vacuum Polariza-
tion. Correction to the photon propagator in the leading in « order for the quark
propagator of general form S;'(p) = A(p)p — B(p) is defined by the sum of two
diagrams shown in Fig.7:

4
., (q) = iN, / (‘;T’;Tr{rﬁ(m,k>Sc(k+>rf(k+,k>sc<k>}+

) d*k
+ZNC/WTY{F§V(IC’Q7 *Q)SG(k)}a (68)

where the vertices I'G (ky., k—) and 'S, (k, ¢, —q) are defined in (35) and (45).

17

a b

Fig. 7. Dispersion (a) and contact (b) diagrams. The thick line is for dressed quark
propagator
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After contraction with the transverse projector, one gets the polarization
operator

,Z_ZQQ

d*k 1 8
8 / (@m)i DEDC {(A+ + A (ByB_ — (kph )AL AL) + kT AT A%+

3
B2 A2 B2 A2
)

+ SR[P4 A2 (kb)) BLB) - 2

16
R A A (o) (B )2 — A iy, k) +

A_B? — A, B?
+ 2k AW (ky k) (A+A_k2A(1)(k+, ko) — +—+)

E

+ BB (B (ky bk )? — KAy b)) ] }+
81N
Z Q7 / )1 DO [3’&1%14(1)(/6, k4 q) + k2 AL A+

4
+ ngkiAkA@)(k, k+q,k) — ByB, — gkinB@) (k,k+q, k)} . (69)

where DY are defined as

1 App+ B Ayp+ B
Sa(p) = - = = £, (70)
() p—my—%, AZp?- B2 D¢

the functions A, and B,, in terms of F,(p) and F(p) read
A, =1+ F,(p), Bp,=my,+ Fs(p). (71)

The expansion of (69) at small ¢2 in the Euclidean metric starts from zero
power in ¢?. The expansion of the Adler function starts from the first power
in ¢?, because the coefficient at (¢?)~! in expansion of (69) becomes zero
under condition that M} and Aj decrease rather fast (exponentially for our
model) at infinity. Indeed, the corresponding integral reduces to the integral of
a total divergence

a2 k2Ak k/’QA% + 2k2B%A;€ + 2A; By, (Bk - k2B;€)

18 & / (k2A7 + BY)?

N, ka2 |7
= R 2
Z Qg WAL B (72)
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which is zero after subtraction of the local contribution

o0

(73)

i 871'2 k:2 + m?2 .

3.2. Quark Self-Energy. The NLO corrections to the quark self-energy were
obtained in [29]. By summing diagrams of Fig. 8, one gets

Ep = Fs(p) - Fu(p)ﬁa (74)
where F,(p) and Fy(p) depend on p? as
Zfz/dzfﬁlimpl_,, /d4l 1
i 2m)* DM D,  Dg M 27)* DM

&'k fifia

X4iNCNf/( )4D D2+l
p

[2k(k + Dmis £ mp(mi + (k+1)2)]

(75)

d*l fE 1 — (pl)/p?
if? Z/2W4DNII D(p)/p

M=o,7 p—l

LN,

a b

Fig. 8. 1/N, corrections to the quark self-energy

3.3. Numerical Results. The quark propagator may be parameterized in terms
of the wave function renormalization Z and the mass function M

Z(p) _ -1 _M
M) Z(p) = A" (p), M(p)—A(p)- (76)

Sa(p) =

The functions Z and M are calculated by using (75), (71) and are shown in
Fig. 9 for one set of parameters. For qualitative comparison, in this figure we also
show the result of lattice calculations. Note, however, that both calculations are
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Fig. 9. The wave function renormalization Z (a) and the mass function M (b). In both
figures the points are the data for lattice calculations in the Landau gauge for m. =
29 MeV [30]. In plot b, the solid line is for the mass function M (p) = B(p)/A(p), the
dashed line is for the dynamical quark mass in the leading in 1/N. order of expansion
(the solution of the gap equation). The figures are drawn for the set of parameters
me = 5.58 MeV, mq = 211 MeV, A = 1.32 GeV

performed in different gauges. The model calculations correspond to the Fock—
Schwinger gauge, while the lattice calculations correspond to the Landau gauge.

From Fig.9,a it is clear that at large momenta (p 2> A) the wave function
renormalization Z goes to unit. At small p the nonperturbative QCD effects
become important and Z deviates significantly from canonical normalization of
the quark field. From Fig.9,b we see that the mass function at large p tends to
the current quark mass m. « 1 MeV, while at p = 0 its value is of order of
several hundreds MeV, depending on model parameters.

Next, the expression (69) written in the Euclidean metric is used to calculate
the contribution of the quark self-energy in NLO approximation to the muon
g — 2. Now, the model parameters are determined with taking into account the
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Fig. 10. The Adler function in the LO and NLO in 1/N. expansion. At large p the Adler
function converges to the QCD prediction N, /1272

Table 2. The model parameters and the contributions of the quark vacuum polarization
to the muon AMM in the LO and NLO in 1/N. expansion

Me, MeV | mq, MeV | A, GeV | aro - 10® | avosnwo - 108
2.82 139.2 2.1 8.89 5.23
5.58 211.2 1.32 4.83 3.81
8.64 269.1 1 3.96 3.51
9.38 281.9 0.95 3.9 3.62
11.78 322.5 0.82 3.94 3.58
18.15 424 0.63 4.91 4.67

NLO corrections to the quark propagator (70). For example, G, is fixed by
physical pion mass. The Adler function with dressing effects is shown in Fig. 10.

As is clear from Fig. 10, the NLO contribution at low @ is negative. This
is due to additional terms in the NLO contact diagram (Fig.7,b) in comparison
with the LO contact diagram. Thus, the NLO corrections to the quark vacuum
polarization lead to diminishing the muon AMM, since its value is dominated by
the low momenta behavior of the Adler function. This fact is reflected numerically
in the last two columns of Table 2.

4. REVIEW OF THE HVP CONTRIBUTION
TO THE MUON AMM WITHIN SOME OTHER MODELS

4.1. The Maris-Tandy (MT) Model. P.Maris and P.Tandy suggested
simple but phenomenologically successive approximation for the quark—gluon
interaction [31]. By using this model, Ch. Fischer and coauthors [10] calculated
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the polarization operator and the Adler function for the photon self-energy with
dressing by gluons of the quark propagator and the quark—photon vertex.

The quark propagator within the MT model is determined as a solution of
the Dyson—Schwinger equation

S(p)~" = iZap + Zam(u)+

d4q 9 P u
el omr Dy (p = @) 585 (g, p), (T7)
where D, (k) is the renormalized dressed gluon propagator; I'?(g,p) is the

renormalized dressed quark—gluon vertex; Zy, Zs, Z4 are the renormalization
A

constants; and | is the translation invariant regularization of the integral by
means of the cut-off parameter A.

After removing the regularization, the solution of Eq.(77) has the general
form

S(p)~" =ipA(p*, u*) + B(p*, 1), (78)
with the renormalization condition
S(p) " p2=p2 = ip+ m(p). (79)

The authors of [10] use the gluon propagator in the Landau gauge

kuk, Z(kQ)
Dlw(k) = (5;4'/ - 22 ) k2

(Euclidean metric) (80)

and the dressed quark-gluon vertex I',(p,q) in the Dirac form I, (k%) =
fyHI’YM(kJQ), where the vertex depends only on a gluon momentum squared k2.
Within this model the product of the renormalization functions of the gluon prop-
agator and the quark—gluon vertex is chosen as

4
Z(kQ)FYM(kQ) _ _7T (lGDkA e—kz/w2+
w

g2
271"}/7” —k2/(4m?
+ 1 — e k/Umo) ) 81

n(r+ (k2 /A7) L€ |). @

where m, = 0.5 GeV, 7 = e? — 1, v, = 12/(33 — 2Ny), Aqcp = 0.234 GeV,
w = 0.4 GeV, and D = 0.93 GeV>.
The dressed quark—gluon vertex is a solution of the Bethe—Salpeter equation

I'y(P k) = Zoyu+

+39°28 [ Gt ST (P)S (0 17"] Dasla = T g = ). 62
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Then, the polarization operator in the leading order is given by

1,,(P) = Z / (;17314 T [S(q)Tu(P,0)S(g4 )] (83)

which is logarithmically divergent. It is regularized by the standard manner
[r(P?) = II(P?) - T1(0).

With all this, the leading in 1/N, contributions to the muon g — 2 are calculated
in [10] for two sets of parameters (see Table 3). The results of calculations are
shown in Fig. 11.

Table 3. Two sets of parameters at normalization point 1> = 19 GeV?

Muy,d» MeV | ms, MeV | mx, MeV | mx, MeV | m,.o, MeV | mg, MeV | a, - 101°

3.7 85 138 495 740 1080 744
11 72 240 477 770 1020 676

D
0.030

0.025
0.020
0.015
0.010
0.005

(=]

0 2 4 6 8
Q, GeV

s

Fig. 11. The Adler function in the MT model. There is a specific for this model “hump’
in vicinity of @ =1 GeV

4.2. The Effective NJL Model. In 1993, E.de Rafael made an estimate
of the low-energy contribution to the muon AMM and showed that within the
Nambu—Jona-Lasinio model it is possible also to estimate the NLO in 1/N,
contribution [7].

Because the renormalized polarization operator satisfies ITZ (0) = 0, then in
the chiral perturbation theory the leading contribution to a, cooresponds to the
O(p®) term

1
Lot =—7 (B F* — P 2O FO\Fy + ... ), (84)
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where

OIE(Q?)

8Q2 Q2:0 '
In the chiral limit, the hadron contribution to a,, in the leading in 1/N, order is
given by

P = (85)

2
Ay ~ (%) mi%wQPL (86)
Thus, to make an estimate, one needs to know the constant P;.

To obtain the low-momentum behavior of the two-point correlation function
Hg(Q) uv» BE.de Rafael takes as a model the extended NJL model (ENJL) [32],
which is quite good for momenta in the region @ < A,, where A, is a scale of
spontaneous breaking of the chiral symmetry

1
Lacp — Lot Qcp T L3+ L + O (A4 ) (87)
where
8 GV A _a _ a
L) = # > @ d) @ vuat) + (L — R)]
X a,b
812G (M) (88)
4l S ~a b _a
L3y () = v ar = 2 (akar)(qLaR)-
X a,b
By using (88), the polarization operator in the leading in 1/N, order is
i
oo _ v (@%)
%
1+ Q2(872Gy /N.A2)TT (Q2)
1 (89)
= M3+ Q%y(1 —y)
1
m (@ s [dyy1-yr <0, S ,
X
0

z
where I'(n,e) = [ — e #2" is incomplete gamma function. Then, the constant
z

€
Py reads

N, 2 1 4 M}, 51—ga
PEN]L r 1 e v 0
1672 3 M3 15 A2 i | ©0)
where B 1
ga = 7 2
1+4Gy—= A2 ( , A—2>
X

is the axial-vector constant.
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The result for a,, for model parameters Mg = 265 MeV, A, = 1165 MeV,
ga = 0.61 obtained in [33], is

a, =6.7-107°, oD

where Eq. (86) is used for calculation.
4.3. Nonlocal Models. The nonlocal model for two kinds of nonlocal currents

with an action
— A Gs . )
Sy — / . [Mz)(za Fm) () = o @)ja ) ©2)
was considered in [34]. In the first case, the effective action is considered within
the instanton liquid model, and the nonlocal current reads

Ja(z) = / drydier(y — 2)r(z — 2) ¥(y) Tatb(2), To=(1,iy7).  (93)

In the second case, the nonlocal current is due to effective one-gluon exchange
in the separable approximation

) = [tz g(e)5 (24 ) a2 - 3). (94)

As we have shown before, considering the Kroll construction, the quark—
photon vertices are the same for both cases, and thus the expression for the
polarization operator (54) is valid for both cases. However, the sets of model
parameters are different, in particular, because the expressions for the pion decay
constant f; do not coincide.

Let us use Eq.(54) to calculate the contribution of the quark vacuum po-
larization to a, for two sets of parameters corresponding to different currents
(Table 4).

Table 4. The model parameters (in MeV, except for dimensionless G's A?) and the quark
vacuum polarization to a,, - 10'°

_ 173 | Form Case 1 Case 2
~{ao) factor Me | Mg A GgA? aup | Me| Mma A | GgA? au
200 G 9.7|318| 651.9 | 18.82 | 357 9.8 | 1356 [459.7 | 71.11 | 544
L2 9.71296| 5399 | 1245|333 | — | — — — —
220 G 741282 772 | 16.98 |355|7.4| 620 | 604 | 29.06 |288
L2 7.41259| 6422 | 1098 |338| — | — — — —
240 G 5.81255| 902.4 | 15.82 | 374 | 5.8 | 424 |752.2 | 20.65 |247
L2 5.81233| 751.8 | 10.14 | 372 | 5.8 | 475 |586.8 | 16.06 |242
260 G 4.6 (235]|1042.2 | 15.08 (412 |4.6 | 339 |903.4| 17.53 | 261
L2 4.6 (216| 868 9.61 |412]4.6| 330 |736.1| 11.77 | 234
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In [34], two kinds of form factors are used. One is of the Gaussian type
2 2112 —p°
96(p°) = [ra@?)]” =exp | 55 )+ 93)

and another is of the n-Lorentzian type
2 1

gLn(pQ) = [TLn(pQH = W, n = 2. 96)

Somewhat different nonlocal model is suggested in [35] with the effective
action

S = [ dta {T@) -0+ moyute) - G in@ia(e) = ir(@in(@]| O

and the nonlocal currents

) = [ 4292)F (+ 5) T (- 3).

<~

jp(x) = /d4zf(z)i (ac + g) %w (ac - g) .

P

(98)

Due to the current with derivative jp(z), the renormalization of the wave
function appears in the leading in 1/N, order, and the quark propagator becomes

Z(p)

S(p) = Z(p) = (1 —a2f(p) ",

- —p+M(p)’
M(p) = Z(p) [mc + a19(p)] -

99)
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Fig. 12. A fit of the function Z(p) for the form factors (100). The model parameters are
me = 5.7 MeV, 61 = 529 MeV, Ao = 814.42 MeV, A1 = 1034.5 MeV, 62 = —0.43
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By using the Gaussian form factors

_p? —p?
g(p) = exp (A_%) , f(p) =exp <A—%) ; (100)

it is possible to calculate the quark vacuum polarization contribution to a,,.

In [35], a choice of the model parameters 71, a2, Ag, A1, m,. is obtained by
fitting the function Z(p) to the data of the lattice calculations [36] with condition
that Z(0) = 0.7 (Fig. 12).

The result for a,, for this model by using (69) is

a, =218-1071° (101)
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