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In the ˇrst part of the review we discuss the effective nonlocal approach in the
quantum ˇeld theory. It concerns primarily the historical retrospective of this approach,
and then we concentrate on the interaction of matter particles (fermions and bosons) with
the (Abelian and non-Abelian) gauge ˇelds. In the second part of the review we consider
the hadronic corrections (vacuum polarization) to the anomalous magnetic moment of the
muon g − 2 factor discussed within the SUf (2) nonlocal chiral quark model. This is
considered in the leading and, partially, in the next-to-leading orders (the effect of the
fermion propagator dressing due to pion ˇeld) of expansion in small parameter 1/Nc (Nc

is the number of colors in QCD).

‚ ¶¥·¢μ° Î ¸É¨ μ¡§μ·  ³Ò μ¡¸Ê¦¤ ¥³ ÔËË¥±É¨¢´Ò° ´¥²μ± ²Ó´Ò° ¶μ¤Ìμ¤ ¢ ±¢ ´-
Éμ¢μ° É¥μ·¨¨ ¶μ²Ö. ˆ§²μ¦¥´  ¨¸Éμ·¨Ö ÔÉμ£μ ¶μ¤Ìμ¤ , ¨ ¤ ´ ¢Ò¢μ¤ ¢§ ¨³μ¤¥°¸É¢¨Ö Î -
¸É¨Í ³ É¥·¨¨ (Ë¥·³¨μ´μ¢ ¨ ¡μ§μ´μ¢) ¸ ( ¡¥²¥¢Ò³¨ ¨ ´¥ ¡¥²¥¢Ò³¨) ± ²¨¡·μ¢μÎ´Ò³¨
¶μ²Ö³¨. ‚μ ¢Éμ·μ° Î ¸É¨ μ¡§μ·  ³Ò · ¸¸³ É·¨¢ ¥³  ¤·μ´´Ò¥ ¢±² ¤Ò (¢ ±ÊÊ³´μ° ¶μ-
²Ö·¨§ Í¨¨) ±  ´μ³ ²Ó´μ³Ê ³ £´¨É´μ³Ê ³μ³¥´ÉÊ ³Õμ´  g − 2 ¢ SUf (2) ´¥²μ± ²Ó´μ°
±¨· ²Ó´μ° ±¢ ·±μ¢μ° ³μ¤¥²¨. �É¨ ¢±² ¤Ò · ¸¸³μÉ·¥´Ò ¢ ²¨¤¨·ÊÕÐ¥³ ¨, Î ¸É¨Î´μ,
¢ ¸²¥¤ÊÕÐ¥³ §  ²¨¤¨·ÊÕÐ¨³ ¶μ·Ö¤± Ì (ÔËË¥±É μ¤¥¢ ´¨Ö Ë¥·³¨μ´´μ£μ ¶·μ¶ £ Éμ· 
¶¨μ´´Ò³ ¶μ²¥³) · §²μ¦¥´¨Ö ¶μ ³ ²μ³Ê ¶ · ³¥É·Ê 1/Nc (Nc Å Î¨¸²μ Í¢¥Éμ¢ ¢ Š•„).

PACS: 12.39.Fe; 13.40.Em

INTRODUCTION

The Lepton Anomalous Magnetic Moment. The quantum mechanics pre-
dicts the gyromagnetic ratio g for the charged point-like fermions with spin 1/2
equal to 2. In relativistic quantum theory this fact is direct consequence of the
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Dirac equation. From the quantum ˇeld theory (quantum electrodynamics (QED)
in that time) formulated by R. Feynman, J. Schwinger, and S. Tomonaga, there
follows the existence of virtual particles, leading to the so-called vacuum polar-
ization effects. The most famous examples of these effects are the Lamb shift in
the hydrogen atom levels and the appearance of the anomalous magnetic moment
of the electron. These effects were predicted and conˇrmed experimentally almost
at the same time.

In QED the general form of the interaction vertex of fermions (with incoming
and outgoing momenta p and p′, correspondingly) with photon of momentum
q = p′ − p reads as (see, e.g., [1]):

Γμ(p, p′) = γμF1(q2) +
iσμνqν

2m
F2(q2), p′2 = p′2 = m2, (1)

where F1 and F2 are the Dirac and Pauli form factors, respectively, σμν =
i

2
(γμγν − γνγμ). At tree level for the charged point-like fermions, one has

F1 = 1, F2 = 0. In QED it is possible to get the relation between the form
factors F1(0) = 1, F2(0) and the gyromagnetic ratio g,

g = 2 [F1(0) + F2(0)] = 2 + 2F2(0). (2)

Thus, a new quantity, the anomalous magnetic moment (AMM) a = F2(0) =
(g − 2)/2, appears. In quantum ˇeld theory a �= 0 due to internal structure of
fermions emergent from the virtual radiative corrections.

The AMM of the leptons (electron or muon) is one of the most accurately
measured and theoretically studied quantities in the elementary particle physics.
The interest to this problem is motivated by our wish to understand the most
delicate features of our microworld at its boundary and extension beyond the
modern knowledge. The simple rule [2, 3] is that the effect of the second-order
contribution to AMM of the lepton al with mass ml due to a possible particle
exchange of mass M is proportional to

al ∝ (ml/M)2. (3)

Thus, sensitivity of the muon to hypothetical interaction with the scale M is 40000
times higher than that of the electron. This fact compensates a less experimental
accuracy of the measurements of the muon AMM and makes this study more
perspective from the point of view of search of new physics.

Recent experiment E821 at the Brookhaven National Laboratory (BNL, USA)
got the muon AMM with very high precision [4]:

aexp
μ = 659208.0(6.3) · 10−10. (4)
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In the near future it is planed to increase the experimental accuracy by a factor
of 4 in new experiments at FermiLab (USA) [5] and JPARC (Japan) [6]. The
standard model predicts the number

atheory
μ = 659179.0(6.5) · 10−10 (5)

that differs from the experiment by 3Ä4 standard deviations (depending on theo-
retical estimates of different groups).

Hadronic Contribution. The theoretical error in (5) is dominated by the
contribution of the strong interaction to the muon AMM (Fig. 1). In the leading
order (LO) in the ˇne coupling constant α this is the hadronic vacuum polarization
(HVP) contribution, and in the next-to-leading order (NLO) this is the iterations
of the HVP and the contribution from the light-by-light (LbL) process.

The HVP contribution to aμ is given by the expression

aHVP
μ =

α

2π

1∫
0

dx
(1 − x)(2 − x)

x
D

(
m2

μx2

1 − x

)
, (6)

Fig. 1. The diagram for the hadronic
vacuum polarization contribution to
the muon AMM. The muon is the solid
line, the photons are the wavy lines,
and the external wavy line is the inter-
action of the muon with the magnetic
photon with momentum q → 0. The
hatched circle is for the HVP

where mμ is the muon mass, D(Q2) is
the Adler function deˇned as the logarith-
mic derivative of the photon polarization
operator

D(Q2) =
∂Π(Q2)
∂ ln(Q2)

. (7)

From Eq. (6) it is clear that aHVP
μ is deter-

mined by the behavior of the Adler function
in the low-momentum region, of order of
the muon mass mμ. The simplest expression
for the relation between the AMM and the
Adler function at zero momentum obtained
in [7] is

aHVP
μ =

(α

π

)2

m2
μ

4π2

3

[
D(Q2)

Q2

]
Q2→0

.

(8)
Later on, new estimates were made in diffe-
rent model approaches: the nonlocal con-
stituent quark models [8, 9], the DysonÄ
Schwinger approach [10], the local consti-
tuent chiral quark model [11], and some
others.

In this work, we consider some details of the nonlocal chiral quark model
that allows one to interpolate the chiral physics from low to large momenta.
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The Nonlocal Chiral Quark Model (NχQM). The partially bosonized action
of the SU(2) × SU(2) nonlocal chiral quark model (NχQM) is written as [12]:

S =
∫

d4x

{
q̄(x)

(
i∂̂ − mc + V̂ (x) + Â(x)γ5

)
q(x)−

− 1
2G1

(
πa(x)2 + σ(x)2

)
+

1
2G2

(
ρμa(x)2 + aμa

1 (x)2
)
+

+
∑

Φi=σ,π,ρ,ω,a1

Φi(x)
∫

d4x1 d4x2 f(x1) f(x2)Q̄(x − x1, x) ΓiQ(x, x + x2)

⎫⎬
⎭ ,

(9)

with q(x) = {u(x), d(x)} being the fermion ˇelds of the u and d quarks,
Q(x, y) Å the corresponding guaged quark ˇelds

Q(x, y) = P exp

⎧⎨
⎩−i

y∫
x

dzμ(V a
μ (z) + Aa

μ(z)γ5)T a

⎫⎬
⎭ q(y),

(10)

Q̄(x, y) = q̄(x)P exp

⎧⎨
⎩−i

y∫
x

dzμ(V a
μ (z) − Aa

μ(z)γ5)T a

⎫⎬
⎭ ,

V a
μ (z) and Aa

μ(z) are external vector and axial-vector ˇelds, respectively (the

notation is V̂ = V μγμ = V a
μ γμT a); T a represents the generators of the 	avor

group; P is the ordering operator of T a along the integration path in every term
of the Taylor series of the exponent; mc is the current quark mass; σ, π, ρ, ω,
a1 are the boson ˇelds for the mesons. G1 and G2 are the coupling constants
determined by experimental input for the masses and other low-energy properties
of the light mesons. f(x) is the form factor of the nonlocal interaction with the
characteristic nonlocality parameter Λ. The spin-	avor matrices Γi for mesons
are given by

Γσ = 1, Γa
π = iγ5τ

a, Γμa
ρ = γμτa, Γμ

ω = γμ, Γμa
a1

= γ5γ
μτa, (11)

where τa stands for the Pauli matrices.
The action (9) contains the gauge-invariant interaction of quarks and mesons

with external ˇelds. At small momenta the action takes into account the nonper-
turbative structure of the strong interaction, as it follows from the instanton liquid
model or the DysonÄSchwinger approach. The nonlocal action interpolates the
physics of low momenta to the region of large momenta, where the nonlocality
disappears and one has only free current quarks. Note that due to the Schwinger
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path-ordered exponent factor (10), the action (9) generates the contact interaction
of quarks and mesons with any number of photons (see discussion in the next
Section).

The scalar ˇeld σ has nonzero vacuum average σ0. Thus, if the external
ˇelds are switched off (A, V = 0), the effective action (9) may be integrated in
quark ˇelds. The action obtained has a nontrivial extremum derived by variation
of the action in the σ ˇeld and equating the variation to zero. Such a condition
is the so-called gap equation that has the nontrivial solution. In momentum space
the gap equation reads

m(p) = mc + 4iG1NfNcf
2(p)

∫
d4k

(2π)4
f2(k)m(k)
k2 − m2(k)

, (12)

where Nc and Nf are the number of colors and 	avors, respectively. The
nontrivial solution of the gap equation (12) means spontaneous violation of the
chiral symmetry. The pion becomes massless in the chiral limit mc = 0, and
the current quarks become the dynamical quarks with the (inverse) propagator
given by

S−1(p) = p̂ − M(p). (13)

The solution of the gap equation (12) is

m(p) = mc − σ0f
2(p) = mc + (m(0) − mc)f2(p) = mc + mdf

2(p), (14)

where md is the dynamical (constituent) quark mass.
The meson propagators are the solutions of the BetheÄSalpeter equations [13]:

Dσ,π(p) =
1

Jσ,π(p) − G−1
1

,

(15)

Jσ,π(p) = i

∫
d4k

(2π)4
f2(k−)f2(k+)Tr [S(k−)ΓσπS(k+)Γσ,π] ,

where k− = k − p/2, k+ = k + p/2. The meson mass with particular quantum
numbers corresponds to the pole of the meson propagator Jσ,π(Mσ,π) = G−1

1 .
The vector meson propagators have the transverse and longitudinal parts

Dμν
ω,ρ,a1

(p) = T μνDT
ω,ρ,a1

(p) + LμνDω,ρ,a1(p), (16)

where the transverse and longitudinal projectors are introduced by

T μν = gμν − pμpν/p2, Lμν = pμpν/p2, (17)

DT
ω,ρ,a1

(p) =
1

G−1
2 + JT

ω,ρ,a1
(p)

, DL
ω,ρ,a1

=
1

G−1
2 + JL

ω,ρ,a1
(p)

, (18)
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with JT
ω,ρ,a1

(p) and JL
ω,ρ,a1

(p) being the transverse and longitudinal parts of the
quark loop

Jμν
ω,ρ,a1

(p) = i

∫
d4k

(2π)4
f(k−)2f(k+)2 Tr

[
S(k−)Γμ

ω,ρ,a1
S(k+)Γν

ω,ρ,a1

]
. (19)

At physical values of masses for the vector mesons, one has the pole condition

JT
ω,ρ,a1

(Mω,ρ,a1) = −G−1
2 . (20)

Also, note that within the nonlocal model, one has the mixing of the pseudoscalar
and axial-vector ˇelds due to the additional nondiagonal quark loop transition

Jμ
π,a1

(p) = i

∫
d4k

(2π)4
f2(k−)f2(k+)Tr

[
S(k−)ΓπS(k+)Γμ

a1

]
. (21)

Formally, the models have two small parameters: the chiral parameter ratio
M(0)/4πfπ and the inverse of color number 1/Nc. The color counting rules
reduce to the following: the quark loop gives the factor Nc, and each meson
propagator is suppressed by 1/Nc factor.

The SU(2) model contains ˇve parameters: the current quark mass mc, the
dynamical quark mass md, the nonlocality parameter Λ, and the scalar G1 and
vector G2 coupling constants. The gap equation (12) relates the parameters mc,
md, Λ, and G1 with each other. The couplings G1 and G2 are ˇtted by physical
masses of the pion and ρ meson, respectively. One more parameter is ˇxed,
e.g., by the pion decay π0 → γγ. Thus, one parameter remains free and may be
varied.

1. THE MODEL OF MINIMAL ELECTROMAGNETIC INTERACTION
IN THE NONLOCAL MODELS

1.1. The Kroll Construction and the KazesÄChangÄMani Identities. The
Feynman rules for interaction of photons with quarks and the Goldstone bosons
are known since 1991 from the work by J. Terning [14]. To derive these rules,
he used the effective gauge-invariant action similar to that written above (9).
The properties of the Schwinger exponent were crucial for this derivation, and
speciˇc path-independent formalism was used. The similar results were obtained
earlier by K.Ohta for the photon interaction with extended nucleon [15]. The
Terning rules were also rederived, e.g., in [16] for the nonlocal quark model
and in [17] for unparticle model, basing on the nonlocal action and using similar
to Terning's methods. The aim of this Section is to give alternative method of
derivation based on the work by N.Kroll [18] published in 1966. The value
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of this derivation is the fact that only the form of the quark propagator (or
quarkÄpion vertex) within the nonlocal model is needed. The Kroll's work is
based on the question: if one modiˇes the fermion propagator, then how to get
the gauged fermionÄphoton vertex? This question was raised in some previous
works [19Ä21]. Other important results on gauging of nonlocal models were
obtained in [10,22,23] and some other works.

It is important that all nonlocal models have formally the same general
structure of the fermion propagator

S−1
G (q) = A(q)q̂ − B(q). (22)

In order to get the minimal interaction, we shall use the operator formalism
based on the Kroll construction [18]. First, we replace the momentum variable
qμ by four noncommuting operator variables zμ and introduce the shift operator
Uk = e−kμ∂μ

, acting as

U−1
k zμUk = zμ + kμ. (23)

Next, we deˇne formally the operator dk
μ on the functions F of variable z

nμdk
μF (z) = lim

ε→0
U−1

k

[
F (z + εnUk) − F (z)

ε

]
, (24)

where nμ is a unit four-vector. Note that after all dk
μ operations are performed,

one needs to return the operator-valued quantity z to the momentum variable q.
The important properties following from the deˇnition (24) are

dk
μF (z)G(z) = [dk

μF (z)] G(z) + F (z + k) dk
μG(z), (25)

dk
μF−1(z) = −F−1(z + k)[dk

μF (z)] F−1(z), (26)

dk
μF (z)G(z) �= dk

μG(z)F (z). (27)

The last property is due to noncommutativity of variables involved. Let us prove
the ˇrst relation. By deˇnition one has

nμ dk
μ[F (z)G(z)] = lim

ε→0
U−1

k

[
F (z + εnUk)G(z + εnUk) − F (z)G(z)

iε

]
.

It is clear for inˇnitesimal shifts that

F (z + εnUk)G(z + εnUk) =
= F (z + εnUk)G(z) + F (z)G(z + εnUk) − F (z)G(z).
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Then, the numerator transforms as

U−1
k [F (z + εnUk)G(z) + F (z)G(z + εnUk) − 2F (z)G(z)] =

= U−1
k [F (z + εnUk)G(z) − F (z)G(z) + F (z)G(z + εnUk) − F (z)G(z)] =

= U−1
k [F (z + εnUk) − F (z)] G(z) + U−1

k F (z) [G(z + εnUk) − G(z)] =

=
{
U−1

k [F (z + εnUk) − F (z)]
}

G(z)+

+ F (z + k)
{
U−1

k [G(z + εnUk) − G(z)]
}

,

and Eq. (25) follows. The second property is proved analogously.
The minimal electromagnetic interaction of the fermion with propagator (22)

with n photons is deˇned recursively

Vμ1,...,μn(z; k1, . . . , kn) = dkn
μn

Vμ1,...,μn−1(z; k1, . . . , kn−1),
(28)

Vμ(z, k) = dk
μS−1

G (z),

where k1, . . . , kn are the momenta of photons, SG is the particle propagator.
The vertices deˇned in (28) satisfy the KazesÄChangÄMani identities (KCMI)
(generalized WardÄTakahashi identities) [20,21]:

kμnVμ1,...,μn(q; k1, . . . , kn) =
= Vμ1,...,μn−1(q + kn; k1, . . . , kn−1) − Vμ1,...,μn−1(q; k1, . . . , kn−1) (29)

or

Vμ1,...,μn−1,λ(q; k1, . . . , kn−1, 0) =
∂

∂qλ
Vμ1,...,μn−1(q; k1, . . . , kn−1). (30)

This construction reproduces the standard rules for the local interaction of n
photons with charged particle (fermion or scalar). Note also that very similar
procedure was used later by H.Haberzettl in [24], where a ©gauge derivativeª was
introduced with exactly the same properties as they followed from the properties
of the operator dk

μ.
1.2. The Application of the Kroll Construction to Derivation of n-Photon

Vertices. Let us consider the action of the operator dk
μ to the simplest but

important cases, the powers of variable z. One gets

dk
μzν = U−1

k ∂μzνUk = gμν ,

dk
μz2 = dk

μzνzν = zμ + (z + k)μ = (2z + k)μ,
(31)

dk
μz4 = (2z + k)μ

[
(z + k)2 + z2

]
= (2z + k)μ

(z + k)4 − z4

(z + k)2 − z2
,

dk
μz2n = (2z + k)μ

(z + k)2n − z2n

(z + k)2 − z2
.
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Note that at this point we do not fully coincide with the original Kroll's work.
He considered the variables z as the Dirac matrix value 2zμ = ẑγμ + γμẑ.

With this prescription we get, e.g., dk
μz2 = dk

μzνγνzργρ = 2zμ + k̂γμ. (As we
see below, another important prescription that we add to the Kroll construction
is symmetrization of the factors depending on z. This prescription leads to
commutativity of factors in Eq. (26).) Moreover, in [18] (see also [25]) only local
propagators were considered as examples.

From (31) it follows that the action of dk
μ on the functions that have the

expansion F (z) =
∑

cnz2n reduces to

dk
μF (z) = (2z + k)μ

F (z + k) − F (z)
(z + k)2 − z2

. (32)

The important example of this relation is the exponential function

dk
μ e−αz2

= (2z + k)μ
e−α(z+k)2 − e−αz2

(z + k)2 − z2
=

= (2z + k)μ(−α)

1∫
0

dt exp
[
−α

(
t(z + k)2 + t̄z2

)]
, (33)

where t̄ = 1 − t.
The one-photon vertex is obtained immediately from (32). The only subtle

point is that the action of dμ(k) on ẑA(z) and A(z)ẑ produces different results,
both satisfying the KCMI and thus being gauge-invariant. To obtain physically
correct result, we need to consider the symmetrized expression:

dk
μ

A(z)ẑ + ẑA(z)
2

=
(2z + k)μ

2
A(z + k) − A(z)

(z + k)2 − z2
ẑ +

A(z + k)
2

γμ+

+
A(z)

2
γμ +

ẑ + k̂

2
(2z + k)μ

A(z + k) − A(z)
(z + k)2 − z2

=

=
A(z) + A(z + k)

2
γμ +

2ẑ + k̂

2
(2z + k)μ

A(z + k) − A(z)
(z + k)2 − z2

. (34)

This corresponds to the kinetic part of the propagator. The scalar part generates
the vertex by simple substitution F → B in (32).

The ˇnal result for the one-photon vertex in the minimal approach becomes

ΓG
μ (q, k) =

A(q) + A(q + k)
2

γμ+

+
2q̂ + k̂

2
(2q + k)μ

A(q + k) − A(q)
(q + k)2 − q2

− (2q + k)μ
B(q + k) − B(q)

(q + k)2 − q2
, (35)
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where k is the photon momentum, q is the momentum of incoming quark. This
result agrees with [14,22]. It is easy to check that this vertex satisˇes the WardÄ
Takahashi identity

kμΓG
μ (q, k) = (k̂+q̂)A(k+q)−M(k+q)−k̂A(k)+M(k) = S−1

G (k+q)−S−1
G (k).

(36)

1.3. Derivation of Two-Photon Vertex. To obtain the two-photon vertex
in accordance with the Kroll construction, we need to calculate dk′

ν dk
μF (z). At

this step the ordering of factors becomes important (see Fig. 2). This is one
more prescription that one should add to the Kroll construction in order to treat
the non-Abelian models. We ˇnd that the most convenient way is to use the
α representation

F (z) =

∞∫
0

dα F (α) e−αz2
. (37)

By using (33) we get the correct ordering

dk
μF (z) =

1∫
0

dt

∞∫
0

dα (−α)F (α) e−αt(z+k)2 (2z + k)μe−αt̄z2
. (38)

This expression written in the α representation is equivalent to (32).
Acting on the integrand (38) by the second operator dk′

ν , we get

[
dk′

ν e−αt(z+k)2
]
(2z + k)μ e−αt̄z2

+ e−αt(z+k+k′)2
[
dk′

ν (2z + k)μ e−αt̄z2
]

=

= (2z + 2k + k′)ν(−αt)

1∫
0

dt′ exp
[
−αt

(
t′(z + k + k′)2 + t̄′(z + k)2

)]
×

× (2z + k)μ e−αt̄z2
+ e−αt(z+k+k′)2

{[
dk′

ν (2z + k)μ

]
e−αt̄z2

+

+ (2z + 2k′ + k)μdk′

ν e−αt̄z2
}

= (2z + 2k + k′)ν(−αt)×

×
1∫

0

dt′ exp
[
−αt(t′(z + k + k′)2 + t̄′(z + k)2)

]
(2z + k)μ e−αt̄z2

+

+ e−αt(z+k+k′)2 (2z + 2k′ + k)μ(2z + k′)ν×

×
1∫

0

dt′(−αt̄) e−αt̄[t′(z+k′)2+t̄′z2] + 2gμν e−αt(z+k+k′)2−αt̄z2
. (39)
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Fig. 2. Figure shows that one needs
to order the αi parameters and the
charge matrices Ti from the right
(the initial state) to the left (the ˇ-
nal state) in accordance with mo-
mentum 	ow. The double dashed
lines are for photons or mesons, the
solid line is for a quark

kn k2 k1 kkn�1

Tn T3 T2 T1

...

Now, integrating this expression with the weight (38), we obtain for the
ˇrst term

1∫
0

dt

∞∫
0

dα (−α)F (α)(−αt)×

×
1∫

0

dt′ exp
[
−αt

(
t′(z + k + k′)2 + t̄′(z + k)2

)
− αt̄z2

]
=

1∫
0

dt×

×
∞∫
0

dα (−α)F (α)

1∫
0

dt′
d

dt′
exp

[
−αt

(
t′(z + k + k′)2 + t̄′(z + k)2

)
− αt̄z2

]
(z + k + k′)2 − (z + k)2

=

=

1∫
0

dt

∞∫
0

dα(−α)F (α)
e−αt(z+k+k′)2−αt̄z2 − e−αt(z+k)2−αt̄z2

(z + k + k′)2 − (z + k)2
=

=
1

(z + k + k′)2 − (z + k)2

[
F (z + k + k′) − F (z)

(z + k + k′)2 − z2
− F (z + k) − F (z)

(z + k)2 − z2

]
,

(40)

for the second term
1∫

0

dt

∞∫
0

dα (−α)F (α)

1∫
0

dt̄′ e−αt(z+k+k′)2(−αt̄) e−αt̄[t′(z+k′)2+t̄′z2] =

=

1∫
0

dt

∞∫
0

dα (−α)F (α) e−αt(z+k+k′)2 e−αt̄(z+k′)2 − e−αt̄z2

(z + k′)2 − z2
=

=
1

(z + k′)2 − z2

[
F (z + k + k′) − F (z + k′)
(z + k + k′)2 − (z + k′)2

− F (z + k + k′) − F (z)
(z + k + k′)2 − z2

]
,

(41)
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and for the third term
1∫

0

dt

∞∫
0

dα F (α) e−αt(z+k+k′)2−αt̄z2
=

F (z + k + k′) − F (z)
(z + k + k′)2 − z2

.

By using the notation for ˇnite differences

F (1)(k1, k2) =
F (k1) − F (k2)

k2
1 − k2

2

,

(42)

F (2)(k1, k2, k3) =
F (1)(k1, k3) − F (1)(k1, k2)

k2
3 − k2

2

,

the result becomes

dk′

ν dk
μF (z) = gμνF (1)(z + k + k′, z)+

+ (2z + 2k + k′)ν(2z + k)μF (2)(z + k + k′, z + k, z)+
+ (μ ↔ ν, k ↔ k′). (43)

Let us transform identically the second term in (35) to

2ẑ + k̂

2
(2z + k)μ

A(z + k) − A(z)
(z + k)2 − z2

→ 2ẑ + k̂

4
dk

μA(z) +
[
dk

μA(z)
] 2ẑ + k̂

4

and then act by dk′

ν

dk′

ν [(2ẑ + k̂)dk
μA(z)] = 2γν [dk

μA(z)] + (2ẑ + 2k̂′ + k̂) dk′

ν dk
μA(z),

(44)

dk′

ν

[
dk

μA(z)
]
(2ẑ + k̂) =

[
dk′

ν dk
μA(z)

]
(2ẑ + k̂) + 2dk

μ A(z + k′)γν .

As a result, we get the two-photon vertex

ΓG
μν(q, k, k′) =

γμ

2
(2q + k′)νA(1)(q + k′, q)+

+
γμ

2
(2q + 2k + k′)νA(1)(q + k + k′, q + k)+

+
2q̂ + k̂ + k̂′

2
gμνA(1)(q + k + k′, q) + (2q + 2k + k′)ν(2q + k)μ×

× A(2)(q + k + k′, q + k, q) − gμνB(1)(q + k + k′, q)−
− (2q + 2k + k′)ν(2q + k)μB(2)(q + k + k′, q + k, q) + (μ ↔ ν, k ↔ k′).

(45)

It satisˇes the KCMI

k′νΓG
μν(q, k, k′) = ΓG

μ (q + k′, k) − ΓG
μ (q, k). (46)

If we put in (45) A = 1, the vertex agrees with that obtained in [14].
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1.4. Derivation of the QuarkÄPionÄPhoton Vertex. Let the quark mo-
mentum be k, the pion momentum be p, and the photon momentum be q. The
quarkÄpion vertex in the Terning model [14] is

FT
π (k, k + p) =

gπq

Mq
iγ5τ

a(Mk + Mk+p). (47)

Then, by the Kroll construction, the quarkÄpionÄphoton vertex is trivially
reproduced [14]:

dq
μ(Mk + Mk+p) = τaQ(2k + q)μ

Mk+q − Mk

(k + q)2 − k2
+

+ Qτa (2(k + p) + q)μ

Mk+p+q − Mk+p

(k + p + q)2 − (k + p)2
. (48)

In the instanton model the quarkÄpion vertex is

F I
π (k, k + p) =

gπq

Mq
iγ5τ

aMqfk+pfk. (49)

The ordering of f is important! Then, by using the Kroll construction, one has

dq
μ(fk+pfk) = (dq

μfk+p)fk + fk+p+q(dq
μfk) =

= τaQfk+p+q(2k + q)μ
fk+q − fk

(k + q)2 − k2
+

+ Qτafk (2(k + p) + q)μ

fk+p+q − fk+p

(k + p + q)2 − (k + p)2
=

= τaQ(2k + q)μfk+p+qf
(1)(k; q) + Qτa (2(k + p) + q)μ fkf (1)(k + p; q).

It corresponds to the previous work [26].
After studying these simple examples, we are able to consider the general

quarkÄpion vertex

F g
π (k, k + p) =

gπq

Mq
iγ5τ

aMqG
(
k2, p2, (k + p)2

)
. (50)

First, write formally the function G as the 3-variable α integral

G
(
k2, p2, (k + p)2

)
=

∞∫
0

dα dβ dγg (α, β, γ) e−γ(k+p)2
[
e−βp2

e−αk2
]
. (51)
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As in the previous example, the ordering of the exponents is important. Now,
apply the operator dq

μ to exponents and use (33):

dq
μ e−γ(k+p)2 e−βp2

e−αk2
= Qλa

[
dq

μ e−γ(k+p)2
]

e−βp2
e−αk2

+

+
1
2
(Qλa − λaQ) e−γ(k+p+q)2

[
dq

μ e−βp2
]

e−αk2
+

+ λaQ e−γ(k+p+q)2 e−βp2
[
dq

μ e−αk2
]

=

= Qλa

⎡
⎣(2(k + p) + q)μ

1∫
0

dt (−γ) e−γ[t(k+p+q)2+t(k+p)2]

⎤
⎦ e−βp2

e−αk2
+

+
1
2

(Qλa −λaQ) e−γ(k+p+q)2

⎡
⎣(2p + q)μ

1∫
0

dt (−β) e−β[t(p+q)2+t(p)2]

⎤
⎦ e−αk2

+

+ λaQ e−γ(k+p+q)2 e−βp2

⎡
⎣(2k + q)μ

1∫
0

dt (−α) e−α[t(k+q)2+tk2]

⎤
⎦ .

Put this back to (51), use (33) as a ˇnite difference and return to the momentum
representation. Then, we get the vertex in the form

dq
μG(k2, p2, (k + p)2) =

= Qλa(2(k + p) + q)μ
G(k2, p2, (k + p + q)2) − G(k2, p2, (k + p)2)

(k + p + q)2 − (k + p)2
+

+
1
2

(Qλa − λaQ)(2p + q)μ
G(k2, (p + q)2, k′2) − G(k2, p2, k′2)

(p + q)2 − p2
+

+ λaQ(2k + q)μ
G((k + q)2, p2, k′2) − G(k2, p2, k′2)

(k + q)2 − k2
.

This result agrees with that obtained by K.Ohta in [15], where the nucleons
were considered as fermions. He applied this result to the study of the pion
photoproduction. Note, the ˇrst term corresponds to the u-channel exchange, and
the second and the third ones to t- and s-channel exchanges, respectively.

The quarkÄtwo-pion vertex in the Terning model [14] is

FT
π (k, k + p) =

= −
(

gπq

Mq

)2
τ{ab}

2
(Mk + Mk+p1 + Mk+p2 + Mk+p1+p2) . (52)

Acting by the Kroll operator, we reproduce Eq. (33) in [14] up to isospin matrices.
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2. THE LEADING CONTRIBUTION TO THE MUON AMM

2.1. The Polarization of Vacuum through the Quarks. In the leading order
of expansion in the small parameter 1/Nc, the quark vacuum polarization is given
by the sum of two diagrams [9] (Fig. 3):

Πμν(q) = iNc

∫
d4k

(2π)4
Tr {Γμ(k+, k−)S(k+)Γν(k+, k−)S(k−)}+

+ iNc

∫
d4k

(2π)4
Tr {Γμν(k, q,−q)S(k)} , (53)

where the vertices Γμ(k+, k−) and Γμν(k, q,−q) are deˇned in (35) and (45).
Contracting (53) with transverse projector (17), one gets the polarization operator

Π(q2) =
4iNc

q2

∫
d4k

(2π)4

∑
Q2

i

D+D−

{
m+m− − k+k− +

2
3
k2
⊥+

+
4
3
k2
⊥

[(
m(1)(k+, k−)

)2(m+m− + k+k−) −
(
m2(k+, k−)

)(1)]}+

+
8iNc

q2

∑
Q2

i

∫
d4k

(2π)4
mk

Dk

[
m′

k +
4
3
m(2)(k, k, k + q)

]
, (54)

k⊥ = k − (kq)
q2

q, k2
⊥ = k2 − (kq)2

q2
, Dk = k2 − m2

k is the denominator of quark

propagator S(k), and we introduce the notation F± = F (k±).
2.2. The Contribution of Intermediate Vector Mesons. In addition, there

is a contribution with intermediate states with quantum numbers of ρ0 or ω
mesons. The photonÄmeson vertex in Fig. 4, a is deˇned by a sum of two diagrams
(Fig. 4, b and Fig. 4, c):

Γμν
γ→ρ0,ω(q) = iNc

∫
d4k

(2π)4
{
Tr
[
S+Γμ(k+, k−)S−Γν

ρ0,ω(k+, k−)
]
+

+ Tr
[
Γμν

ρ0,ω(k, q,−q)Sk

]}
, (55)

where the vertices are

Γν
ρ0,ω(k+, k−) = f(k+)f(k−)γnuTρ0,ω (56)

and

Γμν
ρ0,ω(k, q,−q) = −eγν [f (1)(k, k + q)f(k)(2k + q)μQTρ0,ω+

+ f (1)(k, k − q)f(k)(2k − q)μTρ0,ωQ]. (57)
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Fig. 3. Dispersion (a) and contact (b) diagrams

� �0,

a b c

Fig. 4. The diagrams for the γ − ρ interference

The vertex (55) has transverse structure

qμΓμν
γ→ρ0,ω(q) = 0, (58)

and thus selects the transverse part of the meson propagator in the polarization
operator

Πv(q) =
DT

ρ0,ω(q)ΓT
γ→ρ0,ω(q2)2

q2
. (59)

After simpliˇcations one gets

Πv(q) =
1
q2

B2
v(q)

G−1
2 − JT

ρ0,ω(q)
, (60)

Bv(q) = 4iNcCρ0,ω

∫
d4k

(2π)4

[
f+f−

D+D−

(
m+m− − k+k−+

+
2
3
k2
⊥

[
1 −

(
m2(k+, k−)

)(1)])−4
3
k2
⊥

fk

Dk
f (1)(k, k + q)

]
, (61)

Cρ0,ω = Tr [(τ3+1/3)/2·τ3] = 1 for the ρ0 meson and Tr [(τ3+1/3)/2·1] = 1/3
for the ω meson. Cρ0,ω is a result of the trace in 	avor. From that it is clear
that the contribution to F2(0) from the ω meson is suppressed by a factor 1/9
comparing with the ρ0-meson contribution.
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Note that Bv(0) = 0. After performing the Wick rotation in (61) one gets

Bv(0) ∼
∞∫
0

dk2k2

[
f2

k

D2
k

(
m2 + k2 − 1

2
k2 [1 + 2mkm′

k]
)

+ k2 fk

Dk
f ′

k

]
. (62)

The third term under integral may be integrated by parts by using D′
k = 1+2mm′

k:

∞∫
0

dk2(k2)2
fkf ′

k

Dk
= −

∞∫
0

f2
kd

(
(k2)2

2
1

Dk

)
=

= −
∞∫
0

dk2 k2

Dk
f2

k +

∞∫
0

dk2f2
k

(k2)2

2
1 + 2mm′

k

D2
k

. (63)

After substitution in (62) the integrand becomes identically zero.

2.3. Numerical Results. We choose the nonlocal form factors f(p) in the
Gaussian form

f(p) = e−p2/Λ2
, (64)

where Λ is a nonlocality parameter. The nonlocal form factors (64) not only
re	ect the nontrivial nature of QCD vacuum, but, at the same time, serve as
regulators to make quark loop integrals ˇnite in ultraviolet region.

The contribution to the muon AMM from the quark vacuum polarization is
shown in Fig. 5, with the dynamical quark mass being varied in the interval from
150 to 400 MeV.

Fig. 5. The solid line is the contribution to aμ of the quark polarization vacuum, calculated
in terms of the spectral function obtained in the experiment [27, 28]
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Table 1. The model parameters and the values of contribution to the muon AMM of
vector mesons in the leading in 1/Nc order

mc, MeV md, MeV Λ, GeV G1, GeV−2 G2, GeV−2 aρ0 · 109 aω · 1010

7.6 300 1.04 32.7 −4.27 3.1 3.44

8.2 310 0.99 37.1 −5.23 3.43 3.81

8.8 320 0.95 41.8 −5.81 3.44 3.82

9.4 330 0.91 46.9 −6.14 3.27 3.63

10 340 0.87 52.4 −6.19 2.98 3.31

11 350 0.84 58.2 −5.87 2.55 2.84

The contribution of the vector mesons depends on the coupling G2 (Table 1),
the value of which is determined from (20). The corresponding integral becomes
divergent in time-like region when the effective quark mass becomes mq �
mρ0,ω/2. It means unphysical creation of quarkÄantiquark pair. This problem
may be solved by several ways. One way is to introduce the infrared cut-off for
the loop integral. In this work, we use another method when the quark propagator
is replaced by the so-called ©conˇningª propagator, which does not have poles
in physical time-like region. In this case, the dynamical quark mass m(p) is
deˇned by

m(p) =

√
m2

c + p2 exp (−(p2 + m2
c)/Λ2)

1 − exp (−(p2 + m2
c)/Λ2)

(p2 is in the Euclidean metric),

(65)

Fig. 6. The polarization operator (60) for the ρ0 meson with mc = 8.8 MeV, md =
20 MeV, Λ = 0.95 MeV, G2 = −5.81 GeV−2
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and we have condition md = Λ. For some set of parameters it is possible to get
the ˇnite result in the more simple case

m(p) = mc + mdf
2(p),

(66)

md = 4G1NcNf

∫
d4k

(2π)4
m(k)f2(k)
k2 + m(k)2

.

The muon AMM is calculated from the expression

aμ = 4α2
∑

Q2
i

1∫
0

dx(1 − x)Π

(
m2

μx2

1 − x

)
. (67)

The function B(q) is determined by the transition vertex γ → ρ. Its behavior
for one set of parameters is shown in Fig. 6.

3. NEXT-TO-LEADING IN 1/Nc CORRECTION
TO THE QUARK VACUUM POLARIZATION AND TO THE MUON AMM

3.1. Next-to-Leading in 1/Nc Correction to the Quark Vacuum Polariza-
tion. Correction to the photon propagator in the leading in α order for the quark
propagator of general form S−1

G (p) = A(p)p̂−B(p) is deˇned by the sum of two
diagrams shown in Fig. 7:

Πμν(q) = iNc

∫
d4k

(2π)4
Tr
{
ΓG

μ (k+, k−)SG(k+)ΓG
ν (k+, k−)SG(k−)

}
+

+ iNc

∫
d4k

(2π)4
Tr
{
ΓG

μν(k, q,−q)SG(k)
}
, (68)

where the vertices ΓG
μ (k+, k−) and ΓG

μν(k, q,−q) are deˇned in (35) and (45).

a b

Fig. 7. Dispersion (a) and contact (b) diagrams. The thick line is for dressed quark
propagator
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After contraction with the transverse projector, one gets the polarization
operator

Π(q2) = i
Nc

q2

∑
i

Q2
i×

×
∫

d4k

(2π)4
1

DG
+DG

−

{
(A+ + A−)2(B+B− − (k+k−)A+A−) +

8
3
k2
⊥A2

+A2
−+

+
8
3
k2
⊥

[
(A2(k+, k−))(1)(A+A−[2k2 − (k+k−)]−B+B−) − 2

B2
+A2

−−B2
−A2

+

k2
+−k2

−

]
+

+
16
3

k2
⊥

[
A+A−(k+k−)

(
B(1)(k+, k−)2 − k2A(1)(k+, k−)2

)
+

+ 2k2A(1)(k+, k−)
(

A+A−k2A(1)(k+, k−) −
A−B2

+ − A+B2
−

k2
+ − k2

−

)
+

+ B+B−
(
B(1)(k+, k−)2 − k2A(1)(k+, k−)2

)]}
+

+
8iNc

q2

∑
i

Q2
i

∫
d4k

(2π)4
1

DG
k

[
2
3
k2
⊥AkA(1)(k, k + q) + k2AkA′

k+

+
4
3
k2k2

⊥AkA(2)(k, k + q, k) − BkB′
k − 4

3
k2
⊥BkB(2)(k, k + q, k)

]
, (69)

where DG
± are deˇned as

SG(p) =
1

p̂ − mp − Σp
=

App̂ + Bp

A2
pp

2 − B2
p

=
App̂ + Bp

DG
p

, (70)

the functions Ap and Bp in terms of Fv(p) and Fs(p) read

Ap = 1 + Fv(p), Bp = mp + Fs(p). (71)

The expansion of (69) at small q2 in the Euclidean metric starts from zero
power in q2. The expansion of the Adler function starts from the ˇrst power
in q2, because the coefˇcient at (q2)−1 in expansion of (69) becomes zero
under condition that M ′

k and A′
k decrease rather fast (exponentially for our

model) at inˇnity. Indeed, the corresponding integral reduces to the integral of
a total divergence

∑
i

Q2
i

Nc

8π2

∞∫
0

dk2 k2Ak
k2A3

k + 2k2B2
kA′

k + 2AkBk(Bk − k2B′
k)

(k2A2
k + B2

k)2
=

=
∑

i

Q2
i

Nc

8π2

k4A2
k

k2A2
k + B2

k

∣∣∣∣∣
∞

0

, (72)
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which is zero after subtraction of the local contribution

∑
i

Q2
i

Nc

8π2

k4

k2 + m2
c

∣∣∣∣∣
∞

0

. (73)

3.2. Quark Self-Energy. The NLO corrections to the quark self-energy were
obtained in [29]. By summing diagrams of Fig. 8, one gets

Σp = Fs(p) − Fv(p)p̂, (74)

where Fv(p) and Fs(p) depend on p2 as

Fs(p) = i
∑

M=σ,π

f2
p

∫
d4l

(2π)4
f2

p−l

DM
l

±mp−l

Dp−l
−

f2
p

Dσ
0

∑
M=σ,π

i

∫
d4l

(2π)4
1

DM
l

×

× 4iNcNf

∫
d4k

(2π)4
f2

kf4
k+l

DpD2
p+l

[
2k(k + l)mk+l ± mk(m2

k+l + (k + l)2)
]
,

(75)

Fv(p) = −if2
p

∑
M=σ,π

∫
d4l

(2π)4
f2

p−l

DM
l

1 − (pl)/p2

Dp−l
.

Fig. 8. 1/Nc corrections to the quark self-energy

3.3. Numerical Results. The quark propagator may be parameterized in terms
of the wave function renormalization Z and the mass function M

SG(p) =
Z(p)

p̂ − M(p)
, Z(p) = A−1(p), M(p) =

B(p)
A(p)

. (76)

The functions Z and M are calculated by using (75), (71) and are shown in
Fig. 9 for one set of parameters. For qualitative comparison, in this ˇgure we also
show the result of lattice calculations. Note, however, that both calculations are
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Fig. 9. The wave function renormalization Z (a) and the mass function M (b). In both
ˇgures the points are the data for lattice calculations in the Landau gauge for mc =
29 MeV [30]. In plot b, the solid line is for the mass function M(p) = B(p)/A(p), the
dashed line is for the dynamical quark mass in the leading in 1/Nc order of expansion
(the solution of the gap equation). The ˇgures are drawn for the set of parameters
mc = 5.58 MeV, md = 211 MeV, Λ = 1.32 GeV

performed in different gauges. The model calculations correspond to the FockÄ
Schwinger gauge, while the lattice calculations correspond to the Landau gauge.

From Fig. 9, a it is clear that at large momenta (p � Λ) the wave function
renormalization Z goes to unit. At small p the nonperturbative QCD effects
become important and Z deviates signiˇcantly from canonical normalization of
the quark ˇeld. From Fig. 9, b we see that the mass function at large p tends to
the current quark mass mc ∝ 1 MeV, while at p = 0 its value is of order of
several hundreds MeV, depending on model parameters.

Next, the expression (69) written in the Euclidean metric is used to calculate
the contribution of the quark self-energy in NLO approximation to the muon
g − 2. Now, the model parameters are determined with taking into account the
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DvNLO( )p2

1

4�2

0.025

0.020

0.015

0.010

0.005

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

D

Q, GeV

Fig. 10. The Adler function in the LO and NLO in 1/Nc expansion. At large p the Adler
function converges to the QCD prediction Nc/12π2

Table 2. The model parameters and the contributions of the quark vacuum polarization
to the muon AMM in the LO and NLO in 1/Nc expansion

mc, MeV md, MeV Λ, GeV aLO · 108 aLO+NLO · 108

2.82 139.2 2.1 8.89 5.23
5.58 211.2 1.32 4.83 3.81
8.64 269.1 1 3.96 3.51
9.38 281.9 0.95 3.9 3.62
11.78 322.5 0.82 3.94 3.58
18.15 424 0.63 4.91 4.67

NLO corrections to the quark propagator (70). For example, G1 is ˇxed by
physical pion mass. The Adler function with dressing effects is shown in Fig. 10.

As is clear from Fig. 10, the NLO contribution at low Q is negative. This
is due to additional terms in the NLO contact diagram (Fig. 7, b) in comparison
with the LO contact diagram. Thus, the NLO corrections to the quark vacuum
polarization lead to diminishing the muon AMM, since its value is dominated by
the low momenta behavior of the Adler function. This fact is re	ected numerically
in the last two columns of Table 2.

4. REVIEW OF THE HVP CONTRIBUTION
TO THE MUON AMM WITHIN SOME OTHER MODELS

4.1. The MarisÄTandy (MT) Model. P. Maris and P. Tandy suggested
simple but phenomenologically successive approximation for the quarkÄgluon
interaction [31]. By using this model, Ch. Fischer and coauthors [10] calculated
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the polarization operator and the Adler function for the photon self-energy with
dressing by gluons of the quark propagator and the quarkÄphoton vertex.

The quark propagator within the MT model is determined as a solution of
the DysonÄSchwinger equation

S(p)−1 = iZ2p̂ + Z4m(μ)+

+ Z1

Λ∫
d4q

(2π)4
g2Dμν(p − q)

λa

2
γμS(q)Γa

ν(q, p), (77)

where Dμν(k) is the renormalized dressed gluon propagator; Γa
ν(q, p) is the

renormalized dressed quarkÄgluon vertex; Z1, Z2, Z4 are the renormalization

constants; and
Λ∫

is the translation invariant regularization of the integral by
means of the cut-off parameter Λ.

After removing the regularization, the solution of Eq. (77) has the general
form

S(p)−1 = ip̂A(p2, μ2) + B(p2, μ2), (78)

with the renormalization condition

S(p)−1|p2=μ2 = ip̂ + m(μ). (79)

The authors of [10] use the gluon propagator in the Landau gauge

Dμν(k) =
(

δμν − kμkν

k2

)
Z(k2)

k2
(Euclidean metric) (80)

and the dressed quarkÄgluon vertex Γμ(p, q) in the Dirac form Γμ(k2) =
γμΓYM(k2), where the vertex depends only on a gluon momentum squared k2.
Within this model the product of the renormalization functions of the gluon prop-
agator and the quarkÄgluon vertex is chosen as

Z(k2)ΓYM(k2) =
4π

g2

(
π

ω6
Dk4 e−k2/ω2

+

+
2πγm

ln (τ + (1 + k2/Λ2
QCD)2)

[
1 − e−k2/(4m2

τ )
])

, (81)

where mτ = 0.5 GeV, τ = e2 − 1, γm = 12/(33 − 2Nf ), ΛQCD = 0.234 GeV,
ω = 0.4 GeV, and D = 0.93 GeV2.

The dressed quarkÄgluon vertex is a solution of the BetheÄSalpeter equation

Γμ(P, k) = Z2γμ+

+
4
3
g2Z2

2

∫
d4q

(2π)4
[
γαS(q−)Γμ(P, q)S(q+)γβ

]
Dαβ(q − k)ΓYM(q − k). (82)
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Then, the polarization operator in the leading order is given by

Πμν(P ) = Z2

∫
d4q

(2π)4
Tr [S(q−)Γμ(P, q)S(q+)γν ] , (83)

which is logarithmically divergent. It is regularized by the standard manner

ΠR(P 2) = Π(P 2) − Π(0).

With all this, the leading in 1/Nc contributions to the muon g − 2 are calculated
in [10] for two sets of parameters (see Table 3). The results of calculations are
shown in Fig. 11.

Table 3. Two sets of parameters at normalization point μ2 = 19 GeV2

mu,d, MeV ms, MeV mπ , MeV mK , MeV mρ,ω, MeV mφ, MeV aμ · 1010

3.7 85 138 495 740 1080 744

11 72 240 477 770 1020 676

0.030
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0.010

0.005

0
0 2 4 6 8

Q, GeV

D

Fig. 11. The Adler function in the MT model. There is a speciˇc for this model ©humpª
in vicinity of Q = 1 GeV

4.2. The Effective NJL Model. In 1993, E. de Rafael made an estimate
of the low-energy contribution to the muon AMM and showed that within the
NambuÄJona-Lasinio model it is possible also to estimate the NLO in 1/Nc

contribution [7].
Because the renormalized polarization operator satisˇes ΠH

R (0) = 0, then in
the chiral perturbation theory the leading contribution to aμ cooresponds to the
O(p6) term

Leff = −1
4
(
FμνFμν − P1 e2∂λFμν∂λFμν + . . .

)
, (84)
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where

P1 = − ∂ΠH
R (Q2)
∂Q2

∣∣∣∣
Q2=0

. (85)

In the chiral limit, the hadron contribution to aμ in the leading in 1/Nc order is
given by

aμ �
(α

π

)2

m2
μ

4
3
π2P1. (86)

Thus, to make an estimate, one needs to know the constant P1.
To obtain the low-momentum behavior of the two-point correlation function

ΠH
R (Q)μν , E. de Rafael takes as a model the extended NJL model (ENJL) [32],

which is quite good for momenta in the region Q � Λχ, where Λχ is a scale of
spontaneous breaking of the chiral symmetry

LQCD → LΛχ
QCD + LS, P

NJL + LV, A
NJL + O

(
1

Λ4
χ

)
, (87)

where

LV, A
NJL(x) =

8π2GV (Λχ)
NcΛ2

χ

∑
a,b

[
(q̄a

Lγμqb
L)(q̄b

Lγμqa
L) + (L → R)

]
,

(88)

LS, P
NJL(x) = −8π2GS(Λχ)

NcΛ2
χ

∑
a,b

(q̄a
Rqb

L)(q̄b
Lqa

R).

By using (88), the polarization operator in the leading in 1/Nc order is

Π(1)
V =

Π
(1)

V (Q2)

1 + Q2(8π2GV /NcΛ2
χ)Π

(1)

V (Q2)
,

(89)

Π
(1)

V (Q2) =
Nc

16π2
8

1∫
0

dy y(1 − y)Γ

(
0,

M2
Q + Q2y(1 − y)

Λ2
χ

)
,

where Γ(n, ε) =
∞∫
ε

dz

z
e−zzn is incomplete gamma function. Then, the constant

P1 reads

PENJL
1 =

Nc

16π2

2
3

1
M2

Q

4
15

[
Γ

(
1,

M2
Q

Λ2
χ

)
+

5
4

1 − gA

gA

]
, (90)

where
gA =

1

1 + 4GV

M2
Q

Λ2
χ

Γ

(
0,

M2
Q

Λ2
χ

)
is the axial-vector constant.
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The result for aμ, for model parameters MQ = 265 MeV, Λχ = 1165 MeV,
gA = 0.61 obtained in [33], is

aμ = 6.7 · 10−8, (91)

where Eq. (86) is used for calculation.
4.3. Nonlocal Models. The nonlocal model for two kinds of nonlocal currents

with an action

SE =
∫

d4x

[
ψ(x)(−i∂̂ + mc)ψ(x) − GS

2
ja(x)ja(x)

]
(92)

was considered in [34]. In the ˇrst case, the effective action is considered within
the instanton liquid model, and the nonlocal current reads

ja(x) =
∫

d4y d4zr(y − x)r(x − z)ψ(y) Γaψ(z), Γa = (1, iγ5τ ). (93)

In the second case, the nonlocal current is due to effective one-gluon exchange
in the separable approximation

ja(x) =
∫

d4z g(z)ψ
(
x +

z

2

)
Γaψ

(
x − z

2

)
. (94)

As we have shown before, considering the Kroll construction, the quarkÄ
photon vertices are the same for both cases, and thus the expression for the
polarization operator (54) is valid for both cases. However, the sets of model
parameters are different, in particular, because the expressions for the pion decay
constant fπ do not coincide.

Let us use Eq. (54) to calculate the contribution of the quark vacuum po-
larization to aμ for two sets of parameters corresponding to different currents
(Table 4).

Table 4. The model parameters (in MeV, except for dimensionless GSΛ2) and the quark
vacuum polarization to aμ · 1010

−〈q̄q〉1/3 Form
factor

Case 1 Case 2

mc md Λ GSΛ2 aμ mc md Λ GSΛ2 aμ

200
G 9.7 318 651.9 18.82 357 9.8 1356 459.7 71.11 544
L2 9.7 296 539.9 12.45 333 Å Å Å Å Å

220
G 7.4 282 772 16.98 355 7.4 620 604 29.06 288
L2 7.4 259 642.2 10.98 338 Å Å Å Å Å

240
G 5.8 255 902.4 15.82 374 5.8 424 752.2 20.65 247
L2 5.8 233 751.8 10.14 372 5.8 475 586.8 16.06 242

260
G 4.6 235 1042.2 15.08 412 4.6 339 903.4 17.53 261
L2 4.6 216 868 9.61 412 4.6 330 736.1 11.77 234



726 DOROKHOV A.E. ET AL.

In [34], two kinds of form factors are used. One is of the Gaussian type

gG(p2) =
[
rG(p2)

]2
= exp

(
−p2

Λ2

)
, (95)

and another is of the n-Lorentzian type

gLn(p2) =
[
rLn(p2)

]2
=

1
1 + (p2/Λ2)n

, n � 2. (96)

Somewhat different nonlocal model is suggested in [35] with the effective
action

SE =
∫

d4x

{
ψ(x)(−i∂̂ + mc)ψ(x) − GS

2
[ja(x)ja(x) − jP (x)jP (x)]

}
(97)

and the nonlocal currents

ja(x) =
∫

d4z g(z)ψ
(
x +

z

2

)
Γaψ

(
x − z

2

)
,

(98)

jP (x) =
∫

d4z f(z)ψ
(
x +

z

2

) i
←→̂
∂

2κp
ψ
(
x − z

2

)
.

Due to the current with derivative jP (x), the renormalization of the wave
function appears in the leading in 1/Nc order, and the quark propagator becomes

S(p) =
Z(p)

−p̂ + M(p)
, Z(p) = (1 − σ̄2f(p))−1,

(99)
M(p) = Z(p) [mc + σ̄1g(p)] .
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Fig. 12. A ˇt of the function Z(p) for the form factors (100). The model parameters are
mc = 5.7 MeV, σ̄1 = 529 MeV, Λ0 = 814.42 MeV, Λ1 = 1034.5 MeV, σ̄2 = −0.43
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By using the Gaussian form factors

g(p) = exp
(
−p2

Λ2
0

)
, f(p) = exp

(
−p2

Λ2
1

)
, (100)

it is possible to calculate the quark vacuum polarization contribution to aμ.
In [35], a choice of the model parameters σ̄1, σ̄2, Λ0, Λ1, mc is obtained by

ˇtting the function Z(p) to the data of the lattice calculations [36] with condition
that Z(0) = 0.7 (Fig. 12).

The result for aμ for this model by using (69) is

aμ = 218 · 10−10. (101)
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