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FRACTAL CALCULUS (H) AND SOME APPLICATIONS
N. Makhaldiani'

Joint Institute for Nuclear Research, Dubna
A short history, background, and some applications of the fractal calculus are presented.
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If you are only a poet,
You are not even that.
Piet Hein

INTRODUCTION

In the Universe, matter has mainly two geometric structures, homogeneous [11] and
hierarchical [9]. The homogeneous structures are naturally described by real numbers with an
infinite number of digits in the fractional part and usual Archimedean metrics. The hierarchical
structures are described with p-adic numbers with an infinite number of digits in the integer
part and non-Archimedean metrics [3].

A discrete, finite, regularized version of the homogeneous structures are homogeneous
lattices with constant steps, and distance rising as arithmetic progression. The discrete ver-
sion of the hierarchical structures is hierarchical lattice-tree with scale rising in geometric
progression.

There is an opinion that present-day theoretical physics needs (almost) all mathematics,
and the progress of modern mathematics is stimulated by fundamental problems of theoretical
physics.

1. REAL, p-ADIC AND q-UANTUM FRACTAL CALCULUS

Every (good) school boy/girl knows what is
d’n

=0" = (0)" 1
dx™ ( ) ’ ( )
but what is its following extension:
e aem? )
dee 7 '
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1.1. Euler,... Liouville,... Holmgren,... Let us consider the integer derivatives of the
monomials

d’n

da:—"xm =m(m-—1)...(m—(n—1))z™™ ", n<m, )
S T(m+1-n)
L. Euler (1707-1783) invented the following definition of the fractal derivatives:
d* r 1
A o _LBFYD e 4
dxe NB+1-a)
J.Liouville (1809-1882) takes exponents as a base functions,
d()’
— e = g% e, (5)
dx®
J.H. Holmgren invented (in 1863) the following integral transformation:
Dof — L |z — t|* "L f(t)dt (6)
“o = T(a) |
C
It is easy to show that
T 1
Dg;zxm — (m + ) (mera _ Ceroz)7
: F'm+1+«) o
D;;{eax — a—(y(eax _ e(lC)7

so, ¢ = 0, when m 4+ « > 0, in Holmgren’s definition of the fractal calculus, corresponds
to Euler’s definition, and ¢ = —oo, when a > 0, corresponds to Liouville’s definition.
Holmgren’s definition of the fractal calculus reduces to Euler’s definition for finite ¢, and to
Liouville’s definition for ¢ = oo,

D.2f=Dosf—Dodfs DSf=D"5.f—DZ5 f (8)

—00,T —00,00
We considered the following modification of the ¢ = 0 case [7]:
1

2] |z
—Q

=2 —t|* " f(x = a, 0z)f(z
D32f = fras / 1ttt = B, o)),

. T(02) s )
= |z mf(m)a f(at) = t"a= f(z).
As an example, consider Euler B-function,
1
1 e N L(a)I(B)
_ _ |e—1y48-1 _ a B4 _
Bla, ) = O/dx|1 ol el = T)T(9) D5 D1 = (10)
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We can define also FC as

pof=(poyty = N2t

ﬁﬂ z|7f), dx=656+1, &=uzd. (1

For Liouville’s case,

Dgoo :cf = (D—oo,x)af = (8£F)af) (12)

1 a—1 _ —«
= m / dt(z —t) f@) = D_Oo7xf. (13)

The integrals can be calculated as

(14)
where

Dlf—u I'(0x) 1

Tit+on)’ = "oz’ x(ax>_1f=(8>‘1f=/dtf<t)- (15)
0

Let us consider Weierstrass’ C. T. W. (1815-1897) fractal function

=Y ame e a <1, ab> 1. (16)
n=0

For fractals we have no integer derivatives

f(l) _ ZZ ab n z(b "tt+on)

(17)
but the fractal derivative,

f(a) (f,) _ Z(aba)n ei(b"16-‘,—7704/2-1—<,c:7,,)7

(18)
when ab® = a’ < 1, is another fractal (16).
1.2. p-Adic Fractal Calculus. p-adic analog of the fractal calculus (6)
D°f =% B f@) (19)

where f(z) is a complex function of the p-adic variable z, with p-adic I'-function

o 1 _pafl
Iuwz/ﬁmpwm:

_— 20

— (20)
Qp

was considered by V.S. Vladimirov [10].
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The following modification of p-adic FC is given in [7]:

e el . e Ty(0k))
Dof =ty [ =t ety = ol = 2O ), @1
Qp

1.3. Fractal g-Calculus. The basic object of g-calculus [1] is g-derivative

flx) = flgz)  1—¢"
e PR e P
where either 0 < g <1 or 1 < ¢ < oco. In the limit ¢ — 1, D, — 0.
Now we define the fractal g-calculus,

Dy f(x) = (Dg)" f(z) =

= (1 - Q)a)*(f(z) + Z(—l)"a(a —1)..(a—n+1)

f(q"z)). (23)

n!
n=1
For the case o = —1, we obtain the integral
D ()= (1—qz(1 - ¢"?) ' f(z) =1 - g Y f(g"). (24)
n>=0

In the case of 1 < ¢ < oo, we can give a good analytic sense to these expressions for prime
numbers ¢ = p = 2,3,5,...,29,...,137,... This is an algebra-analytic quantization of the
g-calculus and corresponding physical models. Note also, that p-adic calculus is the natural
tool for the physical models defined on the fractal spaces like Bete lattice (or Brua-Tits trees,
in mathematical literature).

1.4. Fractal Finite-Difference Calculus. Usual finite-difference calculus is based on the
following (left) derivative operator:

z)— f(x —h 1—e M9
D_f(w) = L= SR f(@). (25)
h h
We define corresponding fractal calculus as
D2 f(z) = (D-)*f(z). (26)
In the case of @« = —1, we have usual finite difference sum as regularization of the Riemann
integral
D=V f(x) = h(f(z) + f(z = h) + f(z = 2h) +...). 27)

I believe that the fractal calculus (and geometry) are the proper language for the quantum
(field) theories, and discrete versions of the fractal calculus are proper regularizations of the
fractal calculus and field theories.
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2. HYPERGEOMETRIC FUNCTIONS

A hypergeometric series, in the most general sense, is a power series in which the ratio
of successive coefficients indexed by 7 is a rational function of n,

fz) = Z anz”, apy1 = R(n)a,, R(n)= (28)

n=0

SO

P(o,)f(@) = Q3,0 1210,

(29)
f(2) = £(0) = 2R()f(2), f(2) = (1 —2R(E) " £(0), &= d.
Hypergeometric functions have many particular special functions as special cases, including
many elementary functions, the Bessel functions, the incomplete gamma function, the error
function, the elliptic integrals and the classical orthogonal polynomials, because the hyperge-
ometric functions are solutions to the hypergeometric differential equation, which is a fairly
general second-order ordinary differential equation.
In the generalization given by Eduard Heine in the late nineteenth century, the ratio of
successive terms, instead of being a rational function of n, is considered to be a rational
function of ¢"

=) apa", ant1 = R(¢")a n) = Plasg”)
f(l’) - nz}:o nt 5 Untl R(q ) n; R( ) Q(ﬁv q")’
Playa) (@) = Q(,¢") L=, (30)

T

f(@) = f(0) =2R(¢") f(2), f(x)=(1—xR(¢")"f(0), =20,

Another generalization, the elliptic hypergeometric series, are those series where the ratio of
terms is an elliptic function (a doubly periodic meromorphic function) of n.

There are a number of new definitions of hypergeometric series, by Aomoto, Gelfand
and others, and applications, for example, to the combinatorics of arranging a number of
hyperplanes in complex N-space.

2.1. Lauricella Hypergeometric Functions (LFs). For LFs (see, e.g., [8]), we find the
following formulas:

(@)1+...48, (01)81 - (bn)s oytotz _
(c1)s, -+ (en)s,

FA(a;bla"'abn;Clv"'7Cn;zla"'7zn):

a)s,+..+6,
= MF(ahbl;clm) < Fan, bp; cni zn) =

(a1)s, -+ (an)s,
_ m bl)n e (b )n Zml Zm"
— T Y\ F" = (a) 1/1+---+mn( 11 n l/nl_”.n_, Al 4t o] < 1
( ) mz>:0 (c1)my = (en)m,, my! my! | 1| | nl
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(a1)s, -+ (an)s, (b1)s, - (bn)s, otttz
(€)s1+..+5,

Fp(ay,...,an;b1, ... bp;c21, ... 2n) =

_ MF(al,bl;q;zq) <+ Fan, bn; cn; 2n) = T(c)F™ =

(C)5l+~~~+6n
a - (a b - b Zm’l Zm"
:Z (@), + - @) (b1, (")m"l—,... T ml < L[] < 1
m>0 (©)mat...tmn, my: Mp! 31)
" . (@54 15, (D)1 460 gm
Fo(asbyer, ..o Cny21yey2n) = e _

(c1)s, -+ (en)o,,

(@), +..45,(0)5, +...45,
— n n F(ai,bi;e1;21) - Flan, by e 2n) =
(al)él s (an)gn (b1)51 ... (bn)én ( 1,01;C1 1) ( )

=T Ha)T ') F" =T 1 (b)F4 =

=2 (@)mittmn D)y 4omn 2170 20" a2 4+ |V <
m=>0 (Cl)m/l e (Cn)m,n m1! mnl ’ s n ;
b .o (b
FD(a; bi,..ybnsczn, ., Zn) = (a)61+~~~+5n( 1)51 ( n)5n e#1ttzn —

(0)51+...+5n
_ (@siy. g5, (c1)s, - (en)s, P
(a1)s, -+~ (an)s, (€)o:+.. 45,

= T_l(a)T(c)F” =T(c)Fa = T_l(a)FB =

(a1,bi;¢1521) - F(an, b cn; 2n) =

(c1)my -+ (en)m, my! my!’

b ... (b mi Mn
_ Z (a)m1+~~~+mn( 1)m1 ( n)mn (a1 Zn |2:1| <1,..., |Zn| <1.
m=>=0

2.2. Lomidze B,, Function (LBn). In paper [4], the following formula was proposed:

Bn(rO;Tlv"'vrn):
/ - ziu—xp "t
- . - _ -
= det |z} / w1 =)t H <%> du| /det [z} "] =
k=0 ktj \ i T Tk
Ti—1/; ’

T(ro)T(ry)---T
_ L)0r) - D) g e < ns1 (32)
Tro+ri+...4+rm)

We find a simple proof of this formula. Let us put the formula in the following factorized
form:

1
n . _ rp—1
LB, (z,r) = det a:;_l / duu™T02(1 — )" ! H (%) =
25 1/, k=LkAj 0 F
L(ro)T'(r1) - - T'(rn)
T(ro+m+...4+m)

=det V,,(2)Bn(r), Vi(z) =[], Bu(r)= (33)

Now, it is enough to proof this formula for general values of x; and particular values of 7;,
e.g., r; = 1, and for general values of r; and particular values of z;, e.g., x; = p’, 1 <@ < n.
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In the case of r; = 1, the right-hand side of the formula is equal to the Vandermonde
determinant divided by n! The left-hand side is the determinant of the matrix with elements
A = x;‘fl (1—(zj—1/x;)")/i. When we calculate determinant of this matrix, from the row 4,
we factorize 1/4,2 < 7 < n which gives the 1/n! — the rest matrix we calculate transforming

the matrix to the form of the Vandermonde matrix.

This is the half way of the proof. Let us take the concrete values of z; = p’, 1< i < n,
where p is positive integer and general complex values for r;,0 < ¢ < n, and calculate
both sides of the equality. For Vandermonde determinant we find for high values of p the
following asymptotics:

n 2
detV=p", N=) k(k—1)= M. (34)

3
k=2
The matrix elements are

1

n Tl x r—1
. . _ o U — Tp
Bij — (E; 1 o 2(1 o u)rj 1 H J du —
Tj — Tk

5 1/, k=1,k#j
- re—1 - re—1 L
| — j k i — .
=zt 1 H J H uv,—i—ro 2(1 _ U)TJ 1><
J i (Ej — Tk X T — (Ej
1<k<y J<k<n .
j=1/x;
—1 —1
u—xp\"" 1—xz;\"™*
<0 Il =
X TrU
1<k<j J j<k<n k
1 j—1
N i+ro—2+ > (rp—1) _
— p(z 1)j /u k=1 (]_ _ u)’“] 1du —

0

j—1
_pi-0ip <Z +3 (e - 1),rj> . (35)

k=0

For n = 2 we have

1
_ _ T(ro)T(ry)
By — ro=l( — )l du = —~4—~2,
11 /u ( u) U F(TO"’Tl)
/ I(rg + r)D(r2)
_ _ + 7))l (re
Bow = 2 [ urotmi—1(1 — y)re—ldy — 0 ") \T2) 36
22 p/u (1-u) Y T(ro +m +12)’ 0)

LBQ _ BllBQQ P(To)r(rl)F(Tg)

Vs p? T(ro+m +r2)
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For n = 3,

= — 7 - B
L(ro+m1) (ro, ™),

o L'(ro +71)I'(r2)

1
B — 2 ro+ri—1 1_ ro—1 —
22 /U (I —u) p T(ro + 71+ 72)’

(37)

1
Bss = p6/ ro+ri+ra— 1 u)Tg—l _ p6 Llro+7 + TQ)F(T3)
T(rg+71 +7r2+713)’
0

L33 o BllBQQBBZS _ I‘(ro)I‘(rl)I‘(rg)F(rg)

Vs o p8 C(ro+7r1+r2+73)
Now, it is obvious the last step of the proof [5]

LBy (z,r) = det Vi, (x)B(ro,r1) -~ B(ro + 71+ ... + mn—1,70) = det Vi, (2) B, (1),

(ro)I'(r1) - - T'(rn) oY
- T'(rg)l'(ry) - - - I'(ry,
Vi(z) = [227Y], Ba(r) = .
(z) [J ] () Tlro4+ri4+...+m)

3. FIELD THEORY APPLICATIONS OF FC
Let us consider the following action:

1

= E/dx@(a:)D:@, v=1,2,3,5,...,29,...,137,... 39)

Q1 is a real number field, @), p-prime, are p-adic number fields. In the momentum represen-
tation
/duq) w)|u|“®(u /duxv uz) ®(u),

D™ (uz) = |ul, “xo (uz).

The statistical sum of the corresponding quantum theory is

—a/2
-1l rep>ep
Zy = /dcbexp( 2 ) =det™ /2D = <H|u|v> . (41)
u

3.1. String Theory Applications. For (symmetrized, 4-tachyon) Veneziano amplitude we
have (see, e.g., [2])

(40)

oo

Bu(,) = B(a, §) + B(B,7) + Br.a) = / dz|1 — 2]z,
e (42)
a+pf+y=1
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For the p-adic Veneziano amplitude we take

(o, B) = /da:|1—x|" |t = DL(l(6) ((0213:’(56)) (43)

Now we obtain the N-tachyon amplitude using fractal calculus. We consider the dynamics of
particle given by multicomponent generalization of the action (39), & — z*. For the closed
trajectory of the particle passing through N points, we have

A((El,xg,...,xjv):/dt/dt1'~'/dt]v5(t—ztn)—

v(z1, tr; e, to)v(2, ta; 23,13) - - - v(2N, tN; 21, 11) =
:/dm(t)H </dtn6(x“(tn) —xg)> exp (=S[z(1))) :/H(dkgx(knxn))[l(k), (44)
where

A(k) = /d:cV(k-1 ko) -V (kn)exp(=S),

45)
/ dtx(—knx(t
is vertex function.
Motion equation
Dt — iXkbo(t —t,) =0 (46)
in the momentum representation
|u|“Z* (u) — iX, kb x(—ut,) =0 (47)
has the solution
*(u )—zEk”%, u # 0, (48)
the constraint
Ynkn =0, (49)

and the zero mod z#(0), which is arbitrary. Integration in (44) with respect to this zero mod
gives the constraint (49). On the solution of equation (46)

() = iD; Y KES(t—t,) = %@kalt—tnl"‘l, (50)

the action (39) takes value

N
Z FonFom |t — | 4<k)=/Hdtnexp<—S>- (51)
n=1

YL<TY1
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In the limit, « — 1, for p-adic case we obtain

p—1
at(t) = —i kb In|t — t,),
(0= iy SRt

p—1
Slz(t)] = knkm In|t, — tml, (52)
(0 = 255 3 ki il
A(k) = / [T dte T It — twl|75"Fen.
n=1 n<m

Now in the limit p — 1 we obtain the proper expressions of the real case

2h(t) = —i» kinft—tu|, Sa)] =Y knkm |ty — tml,
n nm (53)

N
A(k) - / H dtn H |tn - tm knkm.
n=1

n<m

By fractal calculus and vector generalization of the model (39), fundamental string ampli-
tudes were obtained in [6].
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