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EDGEWORTH VERSUS GRAMÄCHARLIER SERIES:
x-CUMULANT AND PROBABILITY DENSITY TESTS
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Edgeworth series are often considered the same as GramÄCharlier series in systematic expansions
of non-Gaussian probability distributions. Testing direct approximations of the probability itself as well
as of cumulants in coordinate space as functions of measured cumulants in momentum space, we show
how the former far outperforms the latter.
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The goal of femtoscopy is to ˇnd as much information as possible on the emission
function S(q) in coordinate space, given a measured correlation function in momentum
space,

R(q) = C(q) − 1 =
∫

d3xS(x)
[
|ψ(q,x)|2 − 1

]
. (1)

Inversion of this integral equation is in general a highly nontrivial business (see, for
example, [1]). Here, we use the simplest version, that of a noninteracting ˇnal state,

R(q) =
∫

d3xS(x) eiq·x (2)

reduced to one dimension, q → q, x → x, to make quantitative comparisons between Edge-
worth and GramÄCharlier expansions of non-Gaussian distributions such as often encountered
in experimental femtoscopy. We test the accuracy of these expansions using the probability
density functions (pdf's)

f(q) =
R(q)∫
dq R(q)

= f(0)
∫

dx eiq·xg(x), (3)

g(x) =
S(x)
f(0)

=
∫

dq e−iq·x f(q)
2πf(0)

(4)

themselves and coordinate-space cumulants as touchstones. Cumulants are relevant be-

cause, given f(q), its q-moments μ
(q)
r =

∫
dq f(q) qr and q-cumulants κ

(q)
r of lowest orders

r = 1, 2, 3, . . . provide fundamental information on the properties of f(q): μ
(q)
1 = κ

(q)
1 is

a measure of the location of the peak of f , the variance κ
(q)
2 = μ

(q)
2 − (μ(q)

1 )2 = σ2 mea-

sures its dispersion, the skewness γ
(q)
3 = κ

(q)
3 /σ3 measures its asymmetry and the kurtosis

γ
(q)
4 = κ

(q)
4 /σ4 is a ˇrst description of the rate of decay of f . Higher-order ®generalised
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kurtoses¯ γ
(q)
r = κ

(q)
r /σr would provide successively more detail. Equivalent relations hold

in coordinate space between x-moments, x-cumulants and g(x), e.g., μ
(x)
r =

∫
dx g(x)xr ,

κ
(x)
2 = μ

(x)
2 − (μ(x)

1 )2, etc.
Writing Dr

x = (d/dx)r for short, q-moments are derivatives of the generating function
Φ(x) = 2πf(0)g(−x) =

∫
dq eiqxf(q) and q-cumulants derivatives of its logarithm,

κ(q)
r = (−i)rDr

x ln Φ(x)
∣∣
x=0

. (5)

This ˇxes relations between moments and cumulants to all orders. For identical particles,
both C(q) and g(x) are symmetric, so that moments and cumulants of odd order vanish and
the even-order relations in both q-space and x-space become κ2 = μ2 and κ4 = μ4−3μ2

2 and
κ6 = μ6 − 15μ4μ2 + 30μ3

2, etc.

While for purely Gaussian sources, the second-order cumulants are related by κ
(x)
2 =

1/κ
(q)
2 and all higher-order cumulants are identically zero, neither of these statements is true

in general. We consider both the modiˇcation of κ
(x)
2 resulting from nonzero γ

(q)
r and of

the x-kurtosis γ
(x)
4 = κ

(x)
4 /(κ(x)

2 )2. Since x-moments are found from the generating function
Φ(q) = f(q) / f(0) through

μ(x)
r = (−i)rDr

qΦ(q)
∣∣
q=0

, (6)

we can obtain x-cumulants as combinations of measured q-cumulants.
Gauss GramÄCharlier (GGC) and Edgeworth (GEW) series expansions systematically

compare the measured f(q) with a Gaussian reference pdf f0(q),

f0(q′) =
e−q′2/2

√
2π

(7)

with q′ = q/σ. As shown elsewhere [2, 3], the GGC series results from expanding the
generating function for the non-Gaussian f(q′) in powers of x′,

Φ(x′) = e−x′2/2 exp

⎡
⎣ ∞∑

j=3

ζj(ix′)j

⎤
⎦ = e−x′2/2

∞∑
m=0

cm(ζ)
m!

(ix′)m, (8)

where each cm(ζ) is a polynomial in the set of q-kurtoses ζ = {ζr = γ
(q)
r /r!}m

r=4. Taking
the inverse Fourier transform term by term, one obtains an expansion in terms of ChebychevÄ
Hermite polynomials Hr(q′),

f(q′) = f0(q′)

⎡
⎣1 +

∞∑
j=2

c2j(ζ)
(2j)!

H2j(q′)

⎤
⎦ , (9)

Hr(q′) = f−1
0 (q′) (−Dq′)rf0(q′), (10)

with lowest-order terms (writing Hr(q′) = Hr for short)

f(q′) = f0(q′)
[
1 + ζ4H4 + ζ6H6 +

(
ζ8 +

1
2
ζ2
4

)
H8 + (ζ10 + ζ6 ζ4)H10 +

+
(

ζ12 + ζ8 ζ4 +
1
2
ζ2
6 +

1
6
ζ3
4

)
H12 + . . .

]
. (11)
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With the help of the recursion relation (−Dq′)rf0(q′)H2j(q′) = f0(q′)H2j+r(q′), the rth deriv-
ative of the x-moment generating function can, for even r, be expressed as

Φ(r)(q′) = e−q′2/2 [Hr(q′) + ζ4H4+r(q′) + ζ6H6+r(q′) + . . .] ,

from which the x-cumulants follow as ratios of generating functions at q′ = 0 in terms of

generalised q-kurtoses γr = κ
(q)
r /σr; for example, the second-order x-cumulant is

κ
(x)
2 =

(−i)2

κ
(q)
2

Φ(2)(q′)
Φ(0)(q′)

∣∣∣∣∣
q′=0

=
1

κ
(q)
2

⎡
⎢⎣1 +

5
8
γ4 −

7
48

γ6 +
3

128
(γ8 + 35γ2

4) + . . .

1 +
1
8
γ4 −

1
48

γ6 +
1

384
(γ8 + 35γ2

4) + . . .

⎤
⎥⎦ , (12)

while the x-kurtosis in fourth order is (omitting the arguments of Φ)

γ
(x)
4 =

Φ(4) Φ(0) − 3Φ(2) Φ(2)

Φ(2) Φ(2)

∣∣∣∣
q′=0

=

⎡
⎢⎣ γ4 −

1
2
γ6 +

1
8
γ8 +

15
4

γ2
4 + . . .

1 +
5
4
γ4 −

7
24

γ6 +
3
64

γ8 +
65
32

γ2
4 + . . .

⎤
⎥⎦ , (13)

with a similar expression for κ
(x)
4 .

To inˇnite order, the above would be exact, at least formally, but for realistic applications,
these series must of course be truncated at some ˇnite order. To quantify the difference
between such truncated versions of the GGC series and the exact expressions, we make use
of the Symmetric Normal Inverse Gaussian (SNIG),

f(q |α, δ) =
αδ eαδ K1(α

√
δ2 + q2)

π
√

δ2 + q2
, (14)

a special case of the Normal Inverse Gaussian density [4], as a solvable toy model for f(q′)
which yields exact expressions for both coordinate- and momentum-space cumulants (K1 is
the modiˇed Bessel function). The SNIG reverts to a Gaussian in the limit α → ∞ and has
q-moment generating function Φ(x |α, δ) = exp [δα − δ

√
α2 + x2]. Measuring κ

(q)
2 and γ

(q)
4

ˇxes the parameters α and δ, so that higher-order q-cumulants and kurtoses of the SNIG can
be expressed as closed functions in terms of these quantities [2]. Similarly, using the SNIG
pdf as x-moment generating function, we obtain exact expressions for x-cumulants. Omitting

below the arguments of the Bessel functions, which are αδ = 3/γ
(q)
4 in every case, these

®exact¯ x-cumulants are

κ
(x)
2,SNIG =

1

κ
(q)
2

K2

K1
, (15)

κ
(x)
4,SNIG =

1

κ
(q) 2
2

3K3K1 − 3K2
2

K2
1

, (16)

γ
(x)
4,SNIG =

3K3K1 − 3K2
2

K2
2

. (17)

With these exact x-cumulants as reference, we can test the accuracy of various truncations
of Eqs. (12), (13) as a function of the GramÄCharlier order m = 2j of Eq. (9). The results
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are disastrous: truncated-GGC versions of κ
(x)
2 differ from the exact SNIG expression by up

to 40% for γ
(q)
4 � 1, while the truncated γ

(x)
4 deviates from the exact expression by fac-

tors 2 or more. Furthermore, the accuracy of the approximations deteriorates with increasing
order m. GGC series fail completely to approximate the exact x-cumulants.

By contrast, the GaussÄEdgeworth (GEW) series is derived by considering the random
variable q′ to be a pro-forma convolution of n identical independent random variables qi

each with pdf f1(qi), a corresponding generating function Φ1(xi) and second-order cumulant

κ
(q)
2 (n=1) = σ2

1 , in terms of which the generating function for x′, the dual to standardised
variable q′, is

Φ(x′) =
[
Φ1

(
xi

σ1
√

n

)]n

. (18)

Expanding the exponential in powers of 
 = 1/
√

n rather than x′ results in

Φ(x′) = e−x′2/2 exp

⎡
⎣ ∞∑

j=3

ζj (ix′)j 
j−2

⎤
⎦ = e−x′2/2

∞∑
w=0

pw(ζ, ix′) 
w, (19)

and again inverting term by term, one obtains the GaussÄEdgeworth series (again writing
Hr = Hr(q′) for short),

f(q′) = f0(q′)
[
1 + 
2ζ4H4 + 
4

(
ζ2
4

2!
H8 + ζ6H6

)
+ 
6

(
ζ3
4

3!
H12 + ζ4ζ6H10 + ζ8H8

)
+

+ 
8

(
ζ4
4

4!
H16 +

ζ2
4 ζ6

2!
H14 +

ζ2
6

2!
H12 + ζ4ζ8H12 + ζ10H10

)
+ . . .

]
. (20)

Unlike the equivalent GGC expansion of Eq. (11), in which the order of the expansion was
identical with the order of Hm, a given term of order w in the GEW series (20) contains
linear combinations of Hermite polynomials.

Edgeworth re-ordering of terms leads to expressions for the x-cumulants as ratios of power
series in 
. For the SNIG test case, these series simplify to

κ
(x)
2 =

1

κ
(q)
2

⎡
⎢⎣1 +

5
8
γ4


2 +
35
384

γ2
4
4 − 35

3072
γ3
4
6 +

385
98304

γ4
4
8 + . . .

1 +
1
8
γ4


2 − 5
384

γ2
4
4 +

35
9216

γ3
4
6 − 175

98304
γ4
4
8 + . . .

⎤
⎥⎦ , (21)

γ
(x)
4 =

⎡
⎢⎣ γ4


2 +
5
4
γ2
4
4 +

35
96

γ3
4
6 − 35

1152
γ4
4
8 + . . .

1 +
5
4
γ4


2 +
55
96

γ2
4
4 +

35
384

γ3
4
6 +

35
18432

γ4
4
8 + . . .

⎤
⎥⎦ . (22)

The disappearance of γ
(q)
r with r � 6 from the above expression as compared to the equivalent

GGC relations (12), (13) is due to the fact that the SNIG ˇxes higher-order kurtoses in terms

of γ
(q)
4 ,

γ(q)
r = Fr [γ(q)

4 ]
r
2−1, (23)
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where for the SNIG the constants {F4, F6, F8, . . .} are

{
1, 5,

175
3

, . . .

}
. While true for the

SNIG case at hand, relation (23) is true for all n-divisible distributions as shown below.

In Fig. 1, we show the percentage deviations of the Edgeworth-truncated approxima-

tions (21), (22) from their respective exact SNIG values (15) and (17) as a function of γ
(q)
4 .

We ˇnd a dramatic improvement in accuracy over the GGC ordering. The GEW approxima-
tion also continues improving as terms of higher order in w are included.

Fig. 1. Percentage deviations of GEW approximations of κ
(x)
2 and of γ

(x)
4 as a function of the measured

q-kurtosis γ
(q)
4 for various Edgeworth orders w

The GEW truncated series also yields approximations very close to the original SNIG f(q′).
Figure 2 shows that the ˇrst O(
2) correction term of Eq. (20) sufˇces for γ

(q)
4 = 1.0, while

for γ
(q)
4 = 1.5, inclusion of the second O(
4) term is enough [5].

Fig. 2. Comparison of non-Gaussian f(q′) of (14) with Edgeworth approximations (20). Solid line Å

non-Gaussian SNIG f(q′) with γ
(q)
4 = 1.0 (a) and 1.5 (b); dashed line Å Gaussian reference pdf f0(q

′);
dash-dotted line in panel a Å O(�2) approximation; dotted line in panel b Å O(�4) approximation

Clearly, the convolution with parameter n = 
−2 is playing a crucial role in the success
of the GEW. This convolution is not, however, a physical effect but rather a statistical
improvement: In statistics terms, any deviation from Gaussian is captured in the rate of
approach of higher-order cumulants to zero as n increases: many proofs of the Central Limit
Theorem rely on the fact that cumulants of the sum of n independent random variables obey
κr(n) = nκr(n=1) and that the rate of approach to zero of generalised kurtoses is therefore
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γr(n) = γr(1)/n
r
2−1, from which it follows immediately that

Fr =
γr(n)

(γ4(n))
r
2−1

=
γr(1)

(γ4(1))
r
2−1

(24)

is indeed constant in n for any n-divisible f(q′). The SNIG happens to be n-divisible, which
explains post factum the simplicity of formulae (21)Ä(23), but it is by no means unique in
satisfying this property.

The success of GEW ordering is therefore based on the fact that all contributing terms
in a given order of 
 = n−1/2 have the same rate of convergence to the Gaussian limit.
Furthermore, due to the alternating sign of H2r(0) = (−1)r(2r−1)!!, the sum of contributions
within a given O(
w) term tends to be substantially smaller than the individual contributions;
for example, the O(
4) term for the SNIG test case is made up of (1/2)ζ2

4H8(0) = 0.091γ2
4

and ζ6F6H6(0) = −0.104γ2
4, adding up to −0.013γ2

4 .
Equation (24) shows that it is not necessary to know the value of n to make use of

the GEW ordering: once the ordering has been established, we can set n = 1 and use the
experimental q-cumulants in their GEW ordering independently of n. It is not even necessary
to require n-divisibility as such: For the GEW ordering to work, we require only that f(q′)
is reasonably close to a Gaussian as quantiˇed by the errors shown in Fig. 2. The derivation
does not rely on a particular form of f1(qi) other than requiring existence of its cumulants,
or on the size or even existence of a convolution.

The present one-dimensional calculation cannot, of course, be applied immediately to
experimental data, but is meant to show that even on the fundamental level of expansions,
there are important questions which must be addressed ˇrst. In sorting out the fundamental
issue of re-ordering, the present results represent an important step towards a consistent
statistical framework for shape description.

Application to experimental data will require generalisation to three dimensions using the
existing 3D machinery of [3]. Furthermore, sampling �uctuations of experimental cumulants
will have to be taken into account. Fortunately, experimental sample sizes are now large
enough to warrant some optimism in this regard. In this connection, we also note that the

GEW ordering has the additional advantage of placing terms with higher powers of γ
(q)
4 into

low orders of w, making it unnecessary to measure higher-order kurtoses.
This work was supported by the National Research Foundation of South Africa.
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