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The tungsten nuclei *¥°~19OW are investigated within the framework of the interacting boson model
using an intrinsic coherent state formalism. The Hamiltonian operator contains only multipole operators
of the subalgebra associated with the dynamical symmetries SU(3) and O(6). The study includes the
behavior of potential energy surfaces (PESs) and critical points in the space of the model parameters to
declare the geometric character of the tungsten isotopic chain. Some selected energy levels and reduced
E2 transition probabilities B(E2) for each nucleus are calculated to adjust the model parameters by
using a computer code PHINT and simulated computer fitting program to fit the experimental data with
the IBM calculation by minimizing the root-mean-square deviations. The 39~199W isotopes lie in shape
transition SU(3)-O(6) region of the IBM such that the lighter isotopes come very close to the SU(3)
limit, while the behavior ones tend to be near the y-unstable O(6) limit.

B p 6ore uccnenyiores sup Bombpp M BO71OW B p Mk x Mopenu B3 umoseiicTByonIIX 6030HOB
H OCHOBE (hOPM JIN3M HCTMHHOTO KOT€PEHTHOTO COCTOSHUS. I” MUIIBTOHM H COIEPXKHUT TONBKO MYJIbTH-
TOJIBHBIE Omep TOpsI cy0 sreGpsl, orBed fomeil cummerpusim SU(3) u O(6). P cem tpuB ercst mosene-
HHe ToBepxHocTell noTeHun abHOI sHeprun (III1D) u KpUTHYECKUX TOYEK B IMPOCTP HCTBE MOMAEIBHBIX
I P METPOB, U IIOK 3bIB €TCS TEOMETPHYECKUil X P KTep H30TOIMYECKON 1IeNoYKH Bombdp M . Mozeins-
HBIE I P METPBl H XOIATCS M3 ONUC HHs HEKOTOPBIX BBIOP HHBIX YPOBHEW ®HEPIUU M IPHUBENEHHBIX
E2-gepositHocteit epexox  B(E2) s K KIOrO U3 p CCM TPHB eMbIX siep. I 9TOro MCHosb3yercs
komnbiotepHblil ko PHINT u cumynsanus ¢ moMoInpio Iporp MMel (PUTUPOB HUs 9KCHEPUMEHT JIbHBIX
JI HHBIX MUHUMU3 LMeH CPeJHEKB AP THYHBIX OTKIOHEHWi. M3 pe3yabT TOB KOMIBIOTEPHOW CUMYISALNH
nenoukn uzotonos *°71°W pumno, uTo Gonee NMerkwe W3OTOMBI TATOTEIOT B MpefieNie K CHMMETPHH
SU(3), B 1O BpeMs K K y-HecT GmibHbIe siap H xomsrcs B npexeie O(6).

PACS: 01.30.-y; 01.30.Ww; 01.30.Xx

INTRODUCTION

The interacting boson model (IBM) [1] made a great success in a phenomenological but
unified description of quadrupole collective states in even—even nuclei. The basic assumption
of the simplest original versions of the IBM is that the nucleus is built on closed shells or inert
core with even number of bosons and valance bosons outside the closed shell with angular
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momentum L = 0 and L = 2 called s and d bosons analogously to the shell model technique.
In the original form of the model known as IBM-1 no distinction is made between proton
bosons and neutron bosons.

The IBM is in connection not only with the shell model but also with the collective
model [2]. In collective model the deformation of the nuclear surface is respected by five
parameters from which a Hamiltonian of a five-dimensional oscillator results. It contains five-
fold generating and annihilating operators for oscillator quanta. The operators of these bosons
correspond to the operators of the d-shell in the IBM. The corresponding symmetry group of
the IBM is U(6) and possesses three dynamical symmetry limits, namely U(5), SU(3), and
O(6), which describe vibrational, axially deformed, and gamma-soft nuclei, respectively. It
is known that shape phase transition is one of the most significant topics in nuclear structure
research. A number of evidence of nuclear shape phase transitions were observed.

Within the IBM, the three symmetry limits are usually represented as vertices of Casten
triangle [3]. Shape phase transitions between these vertices were widely studied along several
isotopic chains [1,4,5] with respect to the vibration of the total number of bosons. It is
known that the phase transition U(5) to O(6) is second order, while any other transitions
within Casten triangle from a spherical to deformed shape are first order [6, 7], since the
discovery of critical point symmetries E(5) [8] and X (5) [9] which corresponds to the shape
transitions from spherical vibrator to gamma-soft rotor (U (5)-0O(6)) [10-14] and the transition
from spherical to axially deformed (U(5)-SU(3)) [15-18], respectively.

In addition, the Y (5) symmetry [19] was introduced to describe the critical point between
axial and triaxial deformed shapes. Furthermore, the critical point symmetry Z(s) was
introduced [20] for the prolate to oblate shape phase transition. The doubly even mass
tungsten isotopes have been previously investigated both theoretically and experimentally
in recent years. The energy levels, electric quadrupole transition probability B(E2) values
of 182-186yy jsotopes have been studied within the framework of the IBM-1 [21,22] and
IBM-2 [23]. The aim of the present paper is to investigate the SU(3)-O(6) shape transition
in even—even tungsten isotopes.

The main purpose of the present paper is to study the nuclear shape phase transition from
a spherical axially prolate rotor to ~-soft rotor and investigate this transition in even—even
tungsten isotopes. Since the IBM has been shown to be quite a good approximation to
describe the observed nuclear excitation energies and nuclear shapes, we used the IBM with
intrinsic coherent state formalism. The paper is organized as follows. In Sec. 1, the IBM
Hamiltonian operator and the intrinsic coherent state are described. Section 2 is devoted to
study of the PESs of the IBM Hamiltonian. In Sec. 3, the PESs are analyzed in relation to the
critical points. In Sec.4, the dependence of the shape phase transition on the energy ratios
and B(FE2) transition rates are studied. We performed the SU(3)-O(6) calculations applied
to tungsten isotopes in Sec.5. The final section states the conclusions.

1. THE HAMILTONIAN OPERATOR
AND THE INTRINSIC COHERENT STATE OF THE IBM-1

In order to study the shape phase transitions in the IBM, a Hamiltonian with one- and
two-body terms in the sd space can be written in three terms of multipole operators in the
form [1,3]

Hipv = agP'- P+ aiL- L+ a;Q¥ - QX, 1)
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where ag, a1, and ay are the model parameters. Here pT, E, and QX are the pairing, angular
momentum, and quadrupole operators, respectively. The explicit form of each multipole
operator is defined by the following equations:

pT:%(dT.dT,ST.ST), )
L = v10[d" x df]™, 3)
QX = [sT x d+ df x 3]® + x[df x d|®. (4)

Here st and df are creation operators of the s and d bosons, and d is the annihilation operator
of the d boson with the time reversal phase with the phase relation

doj = (=1)* *dy . ®)

Equation (1) defines an IBM-1 Hamiltonian in terms of four independent parameters ag, a1,
as, and Y.

The general state of a nucleus with N bosons can be expressed by a boson intrinsic
coherent state introduced by Ginocchio and Kirson [24] in the form

1

= — T N
) = 5(C)™10) ©
where |0) stands for the boson vacuum (inert core), and I} is the creation operator
i = 1 st + Beosydf + LBsin y(db+d )| . (7)
c 1 +ﬁ2 0 \/5 —

The deformations 3 > 0 and v < 7/3 determine the geometry of nuclear surface.

To investigate the shape phase structure and its transition among the yrast band, we
carry out the technique of angular momentum projection [25]. After some derivation, the
expectation values of the three multipole operators appearing in Eq. (1) are:

(I Plo) = i (1= ®)
(clL-Lle)= %ﬂ% ©)

(€10 Q] &) = b+ (1 + X))+
+ % 43% — 4\/3 X33 cos 3y + %x%‘*] . (10)

2. THE POTENTIAL ENERGY SURFACES (PESs)

The shape phase transition analysis of the Hamiltonian (1) yields the bosonic PES depen-
dence on N, (3, and ~. It is represented by the expectation value of the total Hamiltonian in

the intrinsic coherent state: X
E(N,B,7) = (c|H]|c). (1)
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Using the above expectation values of the multipole operators, Egs. (8)—-(10) yield

Axf3% 4+ A333 cos 3 AyBt
E(Ngﬁa7): 26 ha (316+Cﬁ();)27+ 46

where the coefficients Ay, Az, A4, and Ag are linear combination of the proposed model
parameters ag, a1, az, and x

+ Ao, 12)

Ay = [-(N = 1)ag + 6a; + (x> =8+ 4N)az| N, (13)
Az = —4\@;@(]\[ — 1)N, (14)
Ay = {6&1 + (2N7+ > X2 - 4> ag] N, (15)
Ay = an(N — 1)+ 5a2] N. (16)

3. LOCATION OF CRITICAL POINTS

The shape of nucleus is defined through the equilibrium value of the deformation parame-
ters 5 and -y, which are obtained by minimizing F(N, 3,). A spherical nucleus has a global
minimum in the energy surface at § = 0, while a deformed one has the absolute minimum
at finite values of (3. The parameter v represents the departure from axial symmetry v = 0,
and v = m/3 stands for an axially deformed nucleus prolate and oblate, respectively, while
any other value corresponds to a triaxial shape. If the energy surface is independent of ~ but
shows a minimum at finite value of 3, then the nucleus is «-unstable. The equilibrium value
of the deformation parameter 3y is determined by equating the first-order derivative of the
PES with respect to (§ to zero, which leads to the following equation:

24y +3A383 + (4A4 — 245)5% — A33° = 0. (17)

Also, the phase transition is signaled by the condition at 5 = 0 which fixes the critical points.
The location of the critical point can be readily obtained by putting d2E(N, 3,7)/dB? = 0 at
([ = 0. The condition leads to A, = 0.

1. For pure SU(3) (x = —7 /2, only quadrupole term) and if we eliminate the contribu-
tions of the one-body terms of the quadrupole—quadrupole interaction, the model parameters
become

Ay = 4ay(N — 1)N, (18)
Az = 2v/2a3(N — 1)N, (19)
Ay = %aQ(N —1)N. (20)

Then the equilibrium equation becomes
44 3V2p - 33> —V2p3° =0, (21)
which gives § = V2.
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Now we are looking for the value as which produces sufficiently deep minimum at
0= V2. At 0= V2 a deep V of the deformed minimum is determined in
V= [E(Naﬂ)ﬂ:()*E(Naﬂ)ﬁ:\/ﬁ]:(772N)Na2 (22)

2. For pure O(6) (x = 0, only the pairing term), the parameters of the PESs become

Ay = —(N = 1)ap, (23)
Az = Ay =0, (24)
AQ = %(N — 1)@0, (25)

and the equilibrium equation becomes
1-3%=0, (26)

which yields g = 1.

To produce a deformed ~-unstable structure, it is of course necessary to exclude terms
in cos 37 and shift the minimum in E(3) to finite deformation. This can be accomplished
by a balance between a negative A, term and a larger positive A4 term. This ~-unstable
potential gives predictions shown in the right of Fig.1. For symmetric prolate rotor, the
defined minimum in § requires Az < 0 and A3 > Ay, A3z < Ay.

PES PES
600 600
0(6) 500
400 - 400
300 SU3)
200 - 200 ]
100
0 1 0
e — 100 — .
2 0 2 B 2 0 2 B
PES PES
600 600
500 - 500 -
400 - 400
300 300
200 1 200 1
100 100 -
0 1 0(6)-SU(3) 0 0(6)-SU(3)
—100 T T T T T T -100 N S B S S e e —
2 4 0 | 28 2 0 1 28

Fig. 1. PES’s E(3) plots. The upper left panel shows ~-unstable O(6), while the upper right panel
denotes a typical rotor SU(3). The two lower panels show intermediate transition structure O(6)-SU(3)
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3. To describe the transition from axial symmetric deformation to y-unstable SU(3)-O(6),
we will consider three cases.

Case 1. If a; = (3/8)as and x is fixed at —+/7/2, the essential structure changes de-
pending only on ag/az = A. To find the inflection point, we put A3 = 0, to yield A\, = 4. If
ag/as < A the behavior is SU(3), while if ag/aq > A. the behavior is O(6).

Case 2. If ag = 0 and varying the value of the parameter x between —+/7 /2 and zero.

Case 3. This can be described by using a simple quadrupole—quadrupole Hamiltonian and
varying x between the limiting values of SU(3) and O(6).

4. £2 TRANSITION ENERGY AND B(E2) RATIOS

The electric quadrupole transition operator provides more stringent test of the model. The
most general E2 transition operator in the IBM is given by [26]

T(E2) = as[d'5 + s'd]® + po[d'd)?, (27)
and the reduced electric quadrupole transition probabilities are given by
1
B(E2,I; — I;) = ——|(I||T(E2)||L)|?, 28
(B2, = Iy) = g W T (B)|L) (28)

where I; and Iy are the angular momenta for the initial and final states, respectively.

The coefficient ay being the boson effective charge is an overall scaling: factor for
all B(E2) values which is determined from the fit to the experimental B(FE2,27 — 07)
value. The coefficient 3, may be determined from the quadrupole moment Q(27). The ratio
B2/ = x = —/T/2 in the SU(3) limit and is reduced to zero in the O(6) limit.

The useful quantities of interest which are known to be able to characterize the low-lying
energy spectrum and signal the shape phase transition well are the energy ratios R and the
ratios of the E2 transition rates B defined as

E(4y) E(67) E(02)
Ryo = , Re2 = ; Ro2 = ;
42 E(21) 62 E(21) 02 E(21) (29)
E(22) E(61) :
Roy = Reo = th E(0,) =0
22 E(21)’ 60 E(02)7 w1 ( 1) )
27 B(E2;2, — 01)’ " B(E2;2, — 01)’
(30)
B _ BE20, —2,) B B(E2;2, — 27)
27 B(E2;2, — 01)’ 27 B(E2;2, — 0y)
For SU(3):
1 4
Ryp = 3 Roz = 5(21\7 - 1), (31)
Buy— 0N -1 @2N+5) 10 32)
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For O(6):

Ry =

By =

R()2 = (N - 1)7

5
57
10 (N = 1)(N +5)
7NN +4)

10

-

5. APPLICATION TO EVEN-EVEN TUNGSTEN NUCLEI

(33)

(34)

The values of the parameters in the Hamiltonian are obtained for each nucleus in the
isotopic chain 89=190W by using the computer code PHINT [27] and simulated computer
fitting program to fit energy levels and B(E?2) transitions of the lowest ground, 3 and ~
bands to the experimental data [28]. The best fit parameters are listed in Table 1 and the
calculated energies and B(F2) ratios are given in Table 2 compared to values of [22] and to
the experimental ones, a good agreement is reached. The boson effective charge is taken to

be x for all isotopes.

In Fig.2, we see the evolution of the axial PESs for W isotopes obtained from the IBM
Hamiltonian of Eq. (1) as a function of the deformation parameter 3. The chain of '80—190Ww
isotopes is considered as example of SU(3)-O(6) shape transitions occurring in this mass

Table 1. The values of the adopted parameters (in MeV) of the present model for the tungsten

isotopic chain 180~ 190W
Isotope Ng Ao Ao As As
180wy 14 | 1.5456 | —18.6929 | -7.1038 | 0.1440
182y | 13 | 1.3604 | —17.3568 | —-6.5964 | 0.1346
184w | 12 | 0.8268 | —10.7827 | -4.2823 | 0.5765
186y 11 | 05373 | -7.2426 | -3.0365 | 0.8115
188w | 10 | 0.3418 | —4.7203 | -2.1739 | 1.0450
190wy 9 | 0.1390 | -1.0943 | -1.0447 | 1.6779

Table 2. Calculated values of interested energy and B(F2) ratios characterize the low-lying spec-
trum in tungsten isotopes 52~ '*W compared to the predictions of O(6) and SU(3), [22] and the

experimental data

Cal./Exp. R42 R52 R02 Rso B42 B64 BQQ
SU(3) 3.33 7 13.7 0.29 14 1.48 0

182yw:  Cal. (present) | 3.310 | 6.950 | 11.700 | 0.594 | 1.411 | 1.518 | 0.068

Cal. ([22]) 3310 | 6.944 | 11.190 | 0.621 | 1.419 | 1.520 | 0.067

Exp. 3.290 | 6.800 | 11.350 | 0.599 | 1.380 | 1.523 | 0.077

184w:  Cal. (present) | 3.218 | 6.590 | 8.590 | 0.767 | 1.427 | 1.549 | 0.107

Cal. ([22]) 3.218 | 6.589 | 8536 | 0.772 | 1.463 | 1.635 | 0.103

Exp. 3279 | 6.738 | 9.018 | 0.747 | 1.430 | 1.357 | 0.069

186W:  Cal. (present) | 3.098 | 6.204 | 6.196 | 1.001 | 1.435 | 1.566 | 0.189

Cal. ([22]) 3.097 | 6.203 | 6.049 | 1.020 | 1.443 | 1.566 | 0.172

Exp. 3245 | 6.631 | 7.237 | 0916 | 1.774 | 2.294 | 0.125

0(6) 2.5 45 4.5 1 1.38 1.32 1.38
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Fig. 2. PESs for '80719°W (N = 14—9) calculated with IBM parameters listed in Table 1 as a function
of the deformation parameter (3

region. We can see that in ¥9~184W nuclei a real prolate minimum (SU(3)-limit) occurs.
The nucleus '°W (N = 116) is proposed as a candidate for pure O(6) symmetry; in this
nucleus the oblate and prolate minima coexist at close energies and are transformed into
saddle points.

CONCLUSIONS

The onset of transition from an axially symmetric rotor towards a ~y-soft asymmetric rotor
can be schematically described by breaking the SU(3) symmetry by the inclusion of a PTP.
The ¥0~190W isotopic chain in the SU(3)-O(6) direct region has been investigated. For
these nuclei, the PESs have been calculated within framework of the IBM with intrinsic
coherent formalism. The results indicate that the even—even ®0~199W isotopes lie in the
transition region SU(3)-O(6).
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