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The tungsten nuclei 180−190W are investigated within the framework of the interacting boson model
using an intrinsic coherent state formalism. The Hamiltonian operator contains only multipole operators
of the subalgebra associated with the dynamical symmetries SU(3) and O(6). The study includes the
behavior of potential energy surfaces (PESs) and critical points in the space of the model parameters to
declare the geometric character of the tungsten isotopic chain. Some selected energy levels and reduced
E2 transition probabilities B(E2) for each nucleus are calculated to adjust the model parameters by
using a computer code PHINT and simulated computer ˇtting program to ˇt the experimental data with
the IBM calculation by minimizing the root-mean-square deviations. The 180−190W isotopes lie in shape
transition SU(3)ÄO(6) region of the IBM such that the lighter isotopes come very close to the SU(3)
limit, while the behavior ones tend to be near the γ-unstable O(6) limit.

‚ · ¡μÉ¥ ¨¸¸²¥¤ÊÕÉ¸Ö Ö¤·  ¢μ²ÓË· ³  180−190W ¢ · ³± Ì ³μ¤¥²¨ ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì ¡μ§μ´μ¢
´  μ¸´μ¢¥ Ëμ·³ ²¨§³  ¨¸É¨´´μ£μ ±μ£¥·¥´É´μ£μ ¸μ¸ÉμÖ´¨Ö. ƒ ³¨²ÓÉμ´¨ ´ ¸μ¤¥·¦¨É Éμ²Ó±μ ³Ê²ÓÉ¨-
¶μ²Ó´Ò¥ μ¶¥· Éμ·Ò ¸Ê¡ ²£¥¡·Ò, μÉ¢¥Î ÕÐ¥° ¸¨³³¥É·¨Ö³ SU(3) ¨ O(6). � ¸¸³ É·¨¢ ¥É¸Ö ¶μ¢¥¤¥-
´¨¥ ¶μ¢¥·Ì´μ¸É¥° ¶μÉ¥´Í¨ ²Ó´μ° Ô´¥·£¨¨ (���) ¨ ±·¨É¨Î¥¸±¨Ì ÉμÎ¥± ¢ ¶·μ¸É· ´¸É¢¥ ³μ¤¥²Ó´ÒÌ
¶ · ³¥É·μ¢, ¨ ¶μ± §Ò¢ ¥É¸Ö £¥μ³¥É·¨Î¥¸±¨° Ì · ±É¥· ¨§μÉμ¶¨Î¥¸±μ° Í¥¶μÎ±¨ ¢μ²ÓË· ³ . Œμ¤¥²Ó-
´Ò¥ ¶ · ³¥É·Ò ´ Ìμ¤ÖÉ¸Ö ¨§ μ¶¨¸ ´¨Ö ´¥±μÉμ·ÒÌ ¢Ò¡· ´´ÒÌ Ê·μ¢´¥° Ô´¥·£¨¨ ¨ ¶·¨¢¥¤¥´´ÒÌ
E2-¢¥·μÖÉ´μ¸É¥° ¶¥·¥Ìμ¤  B(E2) ¤²Ö ± ¦¤μ£μ ¨§ · ¸¸³ É·¨¢ ¥³ÒÌ Ö¤¥·. „²Ö ÔÉμ£μ ¨¸¶μ²Ó§Ê¥É¸Ö
±μ³¶ÓÕÉ¥·´Ò° ±μ¤ PHINT ¨ ¸¨³Ê²ÖÍ¨Ö ¸ ¶μ³μÐÓÕ ¶·μ£· ³³Ò Ë¨É¨·μ¢ ´¨Ö Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ
¤ ´´ÒÌ ³¨´¨³¨§ Í¨¥° ¸·¥¤´¥±¢ ¤· É¨Î´ÒÌ μÉ±²μ´¥´¨°. ˆ§ ·¥§Ê²ÓÉ Éμ¢ ±μ³¶ÓÕÉ¥·´μ° ¸¨³Ê²ÖÍ¨¨
Í¥¶μÎ±¨ ¨§μÉμ¶μ¢ 180−190W ¢¨¤´μ, ÎÉμ ¡μ²¥¥ ²¥£±¨¥ ¨§μÉμ¶Ò ÉÖ£μÉ¥ÕÉ ¢ ¶·¥¤¥²¥ ± ¸¨³³¥É·¨¨
SU(3), ¢ Éμ ¢·¥³Ö ± ± γ-´¥¸É ¡¨²Ó´Ò¥ Ö¤·  ´ Ìμ¤ÖÉ¸Ö ¢ ¶·¥¤¥²¥ O(6).

PACS: 01.30.-y; 01.30.Ww; 01.30.Xx

INTRODUCTION

The interacting boson model (IBM) [1] made a great success in a phenomenological but
uniˇed description of quadrupole collective states in evenÄeven nuclei. The basic assumption
of the simplest original versions of the IBM is that the nucleus is built on closed shells or inert
core with even number of bosons and valance bosons outside the closed shell with angular
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momentum L = 0 and L = 2 called s and d bosons analogously to the shell model technique.
In the original form of the model known as IBM-1 no distinction is made between proton
bosons and neutron bosons.

The IBM is in connection not only with the shell model but also with the collective
model [2]. In collective model the deformation of the nuclear surface is respected by ˇve
parameters from which a Hamiltonian of a ˇve-dimensional oscillator results. It contains ˇve-
fold generating and annihilating operators for oscillator quanta. The operators of these bosons
correspond to the operators of the d-shell in the IBM. The corresponding symmetry group of
the IBM is U(6) and possesses three dynamical symmetry limits, namely U(5), SU(3), and
O(6), which describe vibrational, axially deformed, and gamma-soft nuclei, respectively. It
is known that shape phase transition is one of the most signiˇcant topics in nuclear structure
research. A number of evidence of nuclear shape phase transitions were observed.

Within the IBM, the three symmetry limits are usually represented as vertices of Casten
triangle [3]. Shape phase transitions between these vertices were widely studied along several
isotopic chains [1, 4, 5] with respect to the vibration of the total number of bosons. It is
known that the phase transition U(5) to O(6) is second order, while any other transitions
within Casten triangle from a spherical to deformed shape are ˇrst order [6, 7], since the
discovery of critical point symmetries E(5) [8] and X(5) [9] which corresponds to the shape
transitions from spherical vibrator to gamma-soft rotor (U(5)ÄO(6)) [10Ä14] and the transition
from spherical to axially deformed (U(5)ÄSU(3)) [15Ä18], respectively.

In addition, the Y (5) symmetry [19] was introduced to describe the critical point between
axial and triaxial deformed shapes. Furthermore, the critical point symmetry Z(s) was
introduced [20] for the prolate to oblate shape phase transition. The doubly even mass
tungsten isotopes have been previously investigated both theoretically and experimentally
in recent years. The energy levels, electric quadrupole transition probability B(E2) values
of 182−186W isotopes have been studied within the framework of the IBM-1 [21, 22] and
IBM-2 [23]. The aim of the present paper is to investigate the SU(3)ÄO(6) shape transition
in evenÄeven tungsten isotopes.

The main purpose of the present paper is to study the nuclear shape phase transition from
a spherical axially prolate rotor to γ-soft rotor and investigate this transition in evenÄeven
tungsten isotopes. Since the IBM has been shown to be quite a good approximation to
describe the observed nuclear excitation energies and nuclear shapes, we used the IBM with
intrinsic coherent state formalism. The paper is organized as follows. In Sec. 1, the IBM
Hamiltonian operator and the intrinsic coherent state are described. Section 2 is devoted to
study of the PESs of the IBM Hamiltonian. In Sec. 3, the PESs are analyzed in relation to the
critical points. In Sec. 4, the dependence of the shape phase transition on the energy ratios
and B(E2) transition rates are studied. We performed the SU(3)ÄO(6) calculations applied
to tungsten isotopes in Sec. 5. The ˇnal section states the conclusions.

1. THE HAMILTONIAN OPERATOR
AND THE INTRINSIC COHERENT STATE OF THE IBM-1

In order to study the shape phase transitions in the IBM, a Hamiltonian with one- and
two-body terms in the sd space can be written in three terms of multipole operators in the
form [1,3]

HIBM = a0P̂
† · P + a1L̂ · L̂ + a2Q̂

χ · Q̂χ, (1)
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where a0, a1, and a2 are the model parameters. Here P̂ †, L̂, and Q̂χ are the pairing, angular
momentum, and quadrupole operators, respectively. The explicit form of each multipole
operator is deˇned by the following equations:

P̂ † =
1
2
(d† · d† − s† · s†), (2)

L̂ =
√

10[d† × d†](1), (3)

Q̂χ = [s† × d̃ + d† × s̃](2) + χ[d† × d̃](2). (4)

Here s† and d† are creation operators of the s and d bosons, and d̃ is the annihilation operator
of the d boson with the time reversal phase with the phase relation

d̃2,k = (−1)2+kd2,−k. (5)

Equation (1) deˇnes an IBM-1 Hamiltonian in terms of four independent parameters a0, a1,
a2, and χ.

The general state of a nucleus with N bosons can be expressed by a boson intrinsic
coherent state introduced by Ginocchio and Kirson [24] in the form

|c〉 =
1√
N !

(Γ†
c)

N |0〉, (6)

where |0〉 stands for the boson vacuum (inert core), and Γ†
c is the creation operator

Γ†
c =

1√
1 + β2

[
s† + β cos γd†0 +

1√
2
β sin γ(d†2 + d†−2)

]
. (7)

The deformations β � 0 and γ � π/3 determine the geometry of nuclear surface.
To investigate the shape phase structure and its transition among the yrast band, we

carry out the technique of angular momentum projection [25]. After some derivation, the
expectation values of the three multipole operators appearing in Eq. (1) are:

〈c |P̂ † · P̂ | c〉 =
N(N − 1)
4(1 + β2)

(1 − β2)2, (8)

〈c |L̂ · L̂ | c〉 =
6N

1 + β2
β2, (9)

〈c |Q̂χ · Q̂χ | c〉 =
N

1 + β2
[5 + (1 + χ2)β2]+

+
N(N − 1)
(1 + β2)2

[
4β2 − 4

√
2
7

χβ3 cos 3γ +
2
7
χ2β4

]
. (10)

2. THE POTENTIAL ENERGY SURFACES (PESs)

The shape phase transition analysis of the Hamiltonian (1) yields the bosonic PES depen-
dence on N , β, and γ. It is represented by the expectation value of the total Hamiltonian in
the intrinsic coherent state:

E(N, β, γ) = 〈c|Ĥ |c〉. (11)
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Using the above expectation values of the multipole operators, Eqs. (8)Ä(10) yield

E(N, β, γ) =
A2β

2 + A3β
3 cos 3γ + A4β

4

(1 + β2)2
+ A0, (12)

where the coefˇcients A2, A3, A4, and A0 are linear combination of the proposed model
parameters a0, a1, a2, and χ

A2 =
[
−(N − 1)a0 + 6a1 + (χ2 − 8 + 4N)a2

]
N, (13)

A3 = −4

√
2
7

χa2(N − 1)N, (14)

A4 =
[
6a1 +

(
2N + 5

7
χ2 − 4

)
a2

]
N, (15)

A0 =
[
1
4
a0(N − 1) + 5a2

]
N. (16)

3. LOCATION OF CRITICAL POINTS

The shape of nucleus is deˇned through the equilibrium value of the deformation parame-
ters β and γ, which are obtained by minimizing E(N, β, γ). A spherical nucleus has a global
minimum in the energy surface at β = 0, while a deformed one has the absolute minimum
at ˇnite values of β. The parameter γ represents the departure from axial symmetry γ = 0,
and γ = π/3 stands for an axially deformed nucleus prolate and oblate, respectively, while
any other value corresponds to a triaxial shape. If the energy surface is independent of γ but
shows a minimum at ˇnite value of β, then the nucleus is γ-unstable. The equilibrium value
of the deformation parameter β0 is determined by equating the ˇrst-order derivative of the
PES with respect to β to zero, which leads to the following equation:

2A2 + 3A3β + (4A4 − 2A2)β2 − A3β
3 = 0. (17)

Also, the phase transition is signaled by the condition at β = 0 which ˇxes the critical points.
The location of the critical point can be readily obtained by putting d2E(N, β, γ)/dβ2 = 0 at
β = 0. The condition leads to A2 = 0.

1. For pure SU(3) (χ = −
√

7/2, only quadrupole term) and if we eliminate the contribu-
tions of the one-body terms of the quadrupoleÄquadrupole interaction, the model parameters
become

A2 = 4a2(N − 1)N, (18)

A3 = 2
√

2a2(N − 1)N, (19)

A4 =
1
2
a2(N − 1)N. (20)

Then the equilibrium equation becomes

4 + 3
√

2β − 3β2 −
√

2β3 = 0, (21)

which gives β =
√

2.
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Now we are looking for the value a2 which produces sufˇciently deep minimum at
β =

√
2. At β =

√
2 a deep V of the deformed minimum is determined in

V = [E(N, β)β=0 − E(N, β)β=
√

2] = (7 − 2N)Na2. (22)

2. For pure O(6) (χ = 0, only the pairing term), the parameters of the PESs become

A2 = −(N − 1)a0, (23)

A3 = A4 = 0, (24)

A0 =
1
4
(N − 1)a0, (25)

and the equilibrium equation becomes

1 − β2 = 0, (26)

which yields β = 1.
To produce a deformed γ-unstable structure, it is of course necessary to exclude terms

in cos 3γ and shift the minimum in E(β) to ˇnite deformation. This can be accomplished
by a balance between a negative A2 term and a larger positive A4 term. This γ-unstable
potential gives predictions shown in the right of Fig. 1. For symmetric prolate rotor, the
deˇned minimum in β requires A3 < 0 and A3 � A2, A3 � A4.

Fig. 1. PES's E(β) plots. The upper left panel shows γ-unstable O(6), while the upper right panel
denotes a typical rotor SU(3). The two lower panels show intermediate transition structure O(6)ÄSU(3)
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3. To describe the transition from axial symmetric deformation to γ-unstable SU(3)ÄO(6),
we will consider three cases.

Case 1. If a1 = (3/8)a2 and χ is ˇxed at −
√

7/2, the essential structure changes de-
pending only on a0/a2 = λ. To ˇnd the in	ection point, we put A2 = 0, to yield λc = 4. If
a0/a4 < λc the behavior is SU(3), while if a0/a4 > λc the behavior is O(6).

Case 2. If a0 = 0 and varying the value of the parameter χ between −
√

7/2 and zero.
Case 3. This can be described by using a simple quadrupoleÄquadrupole Hamiltonian and

varying χ between the limiting values of SU(3) and O(6).

4. E2 TRANSITION ENERGY AND B(E2) RATIOS

The electric quadrupole transition operator provides more stringent test of the model. The
most general E2 transition operator in the IBM is given by [26]

T (E2) = α2[d†s̃ + s†d̃](2) + β2[d†d̃](2), (27)

and the reduced electric quadrupole transition probabilities are given by

B(E2, Ii → If ) =
1

2Ii + 1
|〈If ||T (E2)||Ii〉|2, (28)

where Ii and If are the angular momenta for the initial and ˇnal states, respectively.
The coefˇcient α2 being the boson effective charge is an overall scaling: factor for

all B(E2) values which is determined from the ˇt to the experimental B(E2, 2+
1 → 0+

1 )
value. The coefˇcient β2 may be determined from the quadrupole moment Q(2+

1 ). The ratio
β2/α2 = χ = −

√
7/2 in the SU(3) limit and is reduced to zero in the O(6) limit.

The useful quantities of interest which are known to be able to characterize the low-lying
energy spectrum and signal the shape phase transition well are the energy ratios R and the
ratios of the E2 transition rates B deˇned as

R42 =
E(41)
E(21)

, R62 =
E(61)
E(21)

, R02 =
E(02)
E(21)

,

(29)

R22 =
E(22)
E(21)

, R60 =
E(61)
E(02)

, with E(01) = 0,

B42 =
B(E2; 41 → 21)
B(E2; 21 → 01)

, B64 =
B(E2; 61 → 41)
B(E2; 21 → 01)

,

(30)

B02 =
B(E2; 02 → 21)
B(E2; 21 → 01)

, B22 =
B(E2; 22 → 21)
B(E2; 21 → 01)

.

For SU(3):

R42 =
10
3

, R02 =
4
3
(2N − 1), (31)

B42 =
10
7

(N − 1)
N

(2N + 5)
(2N + 3)

→ 10
7

. (32)
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For O(6):

R42 =
5
2
, R02 = (N − 1), (33)

B42 =
10
7

(N − 1)(N + 5)
(N)(N + 4)

→ 10
7

. (34)

5. APPLICATION TO EVENÄEVEN TUNGSTEN NUCLEI

The values of the parameters in the Hamiltonian are obtained for each nucleus in the
isotopic chain 180−190W by using the computer code PHINT [27] and simulated computer
ˇtting program to ˇt energy levels and B(E2) transitions of the lowest ground, β and γ
bands to the experimental data [28]. The best ˇt parameters are listed in Table 1 and the
calculated energies and B(E2) ratios are given in Table 2 compared to values of [22] and to
the experimental ones, a good agreement is reached. The boson effective charge is taken to
be χ for all isotopes.

In Fig. 2, we see the evolution of the axial PESs for W isotopes obtained from the IBM
Hamiltonian of Eq. (1) as a function of the deformation parameter β. The chain of 180−190W
isotopes is considered as example of SU(3)ÄO(6) shape transitions occurring in this mass

Table 1. The values of the adopted parameters (in MeV) of the present model for the tungsten
isotopic chain 180−190W

Isotope Nβ A0 A2 A3 A4

180W 14 1.5456 Ä18.6929 Ä7.1038 0.1440
182W 13 1.3604 Ä17.3568 Ä6.5964 0.1346
184W 12 0.8268 Ä10.7827 Ä4.2823 0.5765
186W 11 0.5373 Ä7.2426 Ä3.0365 0.8115
188W 10 0.3418 Ä4.7203 Ä2.1739 1.0450
190W 9 0.1390 Ä1.0943 Ä1.0447 1.6779

Table 2. Calculated values of interested energy and B(E2) ratios characterize the low-lying spec-
trum in tungsten isotopes 182−186W compared to the predictions of O(6) and SU(3), [22] and the
experimental data

Cal./Exp. R42 R62 R02 R60 B42 B64 B22

SU(3) 3.33 7 13.7 0.29 1.4 1.48 0
182W: Cal. (present) 3.310 6.950 11.700 0.594 1.411 1.518 0.068

Cal. ([22]) 3.310 6.944 11.190 0.621 1.419 1.520 0.067
Exp. 3.290 6.800 11.350 0.599 1.380 1.523 0.077

184W: Cal. (present) 3.218 6.590 8.590 0.767 1.427 1.549 0.107
Cal. ([22]) 3.218 6.589 8.536 0.772 1.463 1.635 0.103
Exp. 3.279 6.738 9.018 0.747 1.430 1.357 0.069

186W: Cal. (present) 3.098 6.204 6.196 1.001 1.435 1.566 0.189
Cal. ([22]) 3.097 6.203 6.049 1.020 1.443 1.566 0.172
Exp. 3.245 6.631 7.237 0.916 1.774 2.294 0.125

O(6) 2.5 4.5 4.5 1 1.38 1.32 1.38
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Fig. 2. PESs for 180−190W (N = 14−9) calculated with IBM parameters listed in Table 1 as a function

of the deformation parameter β

region. We can see that in 180−184W nuclei a real prolate minimum (SU(3)-limit) occurs.
The nucleus 190W (N = 116) is proposed as a candidate for pure O(6) symmetry; in this
nucleus the oblate and prolate minima coexist at close energies and are transformed into
saddle points.

CONCLUSIONS

The onset of transition from an axially symmetric rotor towards a γ-soft asymmetric rotor
can be schematically described by breaking the SU(3) symmetry by the inclusion of a P †P .
The 180−190W isotopic chain in the SU(3)ÄO(6) direct region has been investigated. For
these nuclei, the PESs have been calculated within framework of the IBM with intrinsic
coherent formalism. The results indicate that the evenÄeven 180−190W isotopes lie in the
transition region SU(3)ÄO(6).
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