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CHAOTIC SPIN PRECESSION IN ANISOTROPIC
UNIVERSES AND FERMIONIC DARK MATTER
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We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This
effect is present already in the Bianchi-I universe. In the Bianchi-IX universe it acquires the chaotic
character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related
helicity 
ip of fermions in the very early Universe may produce the sterile particles contributing to dark
matter.
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INTRODUCTION

In almost all the applications of mathematical cosmology to the elaboration of observa-
tional data the isotropic Friedmann cosmological models are used. However, in the very early
Universe, the effects of anisotropies could be essential. As is well known, the most sim-
ple and well-studied anisotropic cosmological models are the spatially homogeneous Bianchi
models (see, e.g., [1,2]). Remarkably, already in the Bianchi models one can observe such an
interesting and important phenomenon as the oscillatory approach to the cosmological singu-
larity [3,4]. However, up to our knowledge, the behavior of quantum particles in the Bianchi
universes was not studied in detail. We think that the ˇlling of this gap can be of interest not
only from the theoretical point of view, but can also reveal some interesting physical effects
in the very early Universe.

Especially promising can be the study of motion of the Dirac particles (quarks and leptons)
in gravitational ˇelds. While this study has rather a long history [5], some essential progress
was achieved in a recent series of papers [6Ä8]. In particular, the general expressions char-
acterizing the spin motion in rather general gravitational ˇelds were elaborated in paper [8].
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Here we apply this formalism to the study of the behavior of quantum particles with spin
in some Bianchi universes. We found a novel effect of anisotropy induced spin precession
revealed already in the simplest case of the Bianchi-I universe.

We perform also the comparison with the precession in the Bianchi-IX universe. First of
all, two qualitatively different contributions to the angular velocity are present and, second,
the oscillatory approach to the singularity [3] implies the stochasticity of the changes of the
direction of the precession axis.

We also consider the possible physical consequences of these effects in very early Uni-
verse, including the appearance of effective magnetic ˇeld. The similar precession effects are
also present for classical rotators due to the equivalence principle and might be manifested in
the structure formation in very early Universe.

The equivalence principle implied also the helicity 
ip which is of special interest for the
massive Dirac neutrinos. The neutrinos produced as active ones are becoming sterile due to
gravity-induced helicity 
ip and may contribute to fermionic dark matter.

1. THE PRECESSION OF THE DIRAC PARTICLE IN A GRAVITATIONAL FIELD

Following paper [8], we present the general formula for the precession of the Dirac
particle, adapted for the case of the Bianchi universes, where we shall use the sinchroneous
frame. The metric can be presented as

ds2 = dt2 − δâb̂W
â
c W b̂

d dxc dxd, (1)

where a, b, . . . are world spatial indices, while the ones with the hats are spatial tetrad indices.
We shall also introduce the inverse matrix W a

ĉ such that W a
ĉ W ĉ

b = δa
b .

In paper [8] it was shown that the average spin s in the semiclassical approximation is
precessing with an angular velocity Ω like

ds
dt

= Ω× s = (Ω(1) + Ω(2)) × s. (2)

The velocities Ω(1) and Ω(2) correspond to gravitoelectric and to gravitomagnetic forces,
respectively. Then,

Ωâ
(1) =

1
ε′

W d
ĉ pd

(
1
2
Υδâĉ − εâêf̂C ĉ

êf̂

)
, (3)

Ωâ
(2) =

1
2
Ξâ − 1

ε′(ε′ + m)
εâb̂ĉQ(b̂d̂)δ

d̂n̂W k
n̂ pkW l

ĉpl. (4)

Here C ĉ
âb̂

are anholonomity coefˇcients

C ĉ
âb̂

= W d
â W e

b̂
∂[dẆ

ĉ
e], Câb̂ĉ = gĉd̂C

d̂
âb̂

. (5)

Then,

Qâb̂ = gâĉW
d
b̂
Ẇ ĉ

d , (6)

Υ = −εâb̂ĉCâb̂ĉ, (7)

Ξâ = εâb̂ĉQb̂ĉ. (8)
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The motion of the particle is characterized by its momentum pa and by the energy

ε′ =
√

m2 + δĉd̂W a
ĉ W b

d̂
papb. It can be absorbed together with the particle mass m and its

momentum pa by introducing the velocity va. Thus, the precession velocities are

Ωâ
(1) = vĉ

(
1
2
Υδâĉ − εâêf̂C ĉ

êf̂

)
, (9)

Ωâ
(2) =

1
2
Ξâ − γ

γ + 1
εâb̂ĉQ(b̂d̂)δ

d̂n̂vn̂vĉ, (10)

where γ = 1/
√

1 − v2 is a Lorentz factor.

2. THE SPINNING PARTICLE IN THE BIANCHI-I UNIVERSE

The simplest spatially homogeneous and anisotropic universe is that of Bianchi-I type,
whose metric is [1]:

ds2 = dt2 − a2(t)(dx1)2 − b2(t)(dx2)2 − c2(t)(dx3)2. (11)

Comparing this expression with Eq. (1), we have the following expressions for the nonvan-
ishing elements of the matrix W b

â :

W 1̂
1 = a(t), W 2̂

2 = b(t), W 3̂
3 = c(t). (12)

The elements of the inverse matrix are

W 1
1̂

=
1

a(t)
, W 2

2̂
=

1
b(t)

, W 3
3̂

=
1

c(t)
. (13)

As is well known, the anholonomity coefˇcients for the Bianchi-I model are equal to
zero. Hence, Υ = 0 too and the ©gravitoelectricª contribution Ω(1) disappears. Then, the
nonvanishing coefˇcients of the matrix Qâb̂ are

Q1̂1̂ = − ȧ

a
, Q2̂2̂ = − ḃ

b
, Q3̂3̂ = − ċ

c
. (14)

Correspondingly, also the vector Ξâ disappears. Finally, the nonvanishing components of
the ©gravitomagneticª contribution to the precession of the Dirac particle in the Bianchi-I
universe are, up to cyclic permutations,

Ω1̂
(2) =

γ

γ + 1
v2̂v3̂

(
ḃ

b
− ċ

c

)
. (15)

The solution of the Einstein equations for the empty Bianchi-I universe Å the Kasner
solution [9,10] Å is

a(t) = a0t
p1 , b(t) = b0t

p2 , c(t) = c0t
p3 , (16)
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where the Kasner indices p1, p2, and p3 satisfy the relations

p1 + p2 + p3 = 1, p2
1 + p2

2 + p2
3 = 1. (17)

Correspondingly, Eq. (15) becomes

Ω1̂
(2) =

γ

γ + 1
v2̂v3̂

(
p2 − p3

t

)
(18)

and has some similarity to the Euler equations for rigid body rotation with pi being corre-
spondent with the moments of inertia.

Obviously, this effect can be essential in the early Universe, i.e., at the very small values
of the proper cosmic time t.

Besides the Kasner solution for an empty Bianchi-I universe, some other general ex-
act solutions for the universes with this type of symmetry exist. First of all, it is the
HeckmannÄSchucking solution for the Bianchi-I universe, ˇlled with dust [11], which can
be also generalized for the case when not only dust, but also a cosmological constant and
stiff matter are present [12]. The HeckmannÄSchucking solution can be written down in the
following form:

a(t) = a0t
p1(t0 + t)

2
3−p1 ,

b(t) = b0t
p2(t0 + t)

2
3−p2 , (19)

c(t) = c0t
p3(t0 + t)

2
3−p3 .

Here, the constant t0 depends on the quantity of the dust-like matter in the universe. It
grows when the quantity of dust diminishes. It is easy to see that for the small values of
the cosmic time parameter t � t0, the solution (19) practically coincides with the Kasner
solution (16), (17). In the opposite case, when t � t0, all the scale factors a(t), b(t), and c(t)
are proportional to t2/3; i.e., the universe behaves as the 
at Friedmann universe ˇlled with
dust. Thus, we observe the isotropization of the universe. Let us substitute the factors (19)
into the formula (15) obtaining, up to cyclic permutations,

Ω1̂
(2) =

γ

γ + 1
v2̂v3̂

(p2 − p3)t0
t(t0 + t)

. (20)

At the large values of t � t0 we have

Ω1̂
(2) =

γ

γ + 1
v2̂v3̂

(p2 − p3)t0
t2

(
1 + o

(
t0
t

))
. (21)

Thus, we see that the isotropization implies a very rapid decreasing of the precession effect.

3. PRECESSION IN THE BIANCHI-IX UNIVERSE

The matrix W b̂
a for the Bianchi-IX metric (see, e.g., [2]) can be written as

W b̂
a =

⎛
⎝ −a sinx3 a sinx1 cosx3 0

b cosx3 b sin x1 sin x3 0
0 c cosx1 c

⎞
⎠ , (22)
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where a, b, and c are some functions of time as usual. Its inverse matrix W c
b̂

is

W c
b̂

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
a

sinx3 1
b

cosx3 0

1
a

cosx3

sinx1

1
b

sin x3

sin x1
0

−1
a

cosx1 cosx3

sin x1
−1

b

sinx3 cosx1

sin x1

1
c

⎞
⎟⎟⎟⎟⎟⎟⎠

. (23)

The nonvanishing anholonomity coefˇcients are

C 3̂
1̂2̂

=
c

ab
, and cyclic permutations. (24)

Then,

Υ = 2
(

c

ab
+

b

ac
+

a

bc

)
. (25)

The nonvanishing coefˇcients of the matrix Qâb̂ are the same as in Eq. (14). Hence, Ξâ is
again equal to zero. The ©gravitoelectricª precession velocity, up to cyclic permutations, is

Ω1̂
(1) = v1̂

(
c

ab
+

b

ac
− a

bc

)
. (26)

The expressions for the components of the ©gravitomagneticª velocity Ω(2) remain the
same as in the Bianchi-I universe (see, Eq. (15)).

Thus, we have seen that the ©gravitomagneticª velocity in the Bianchi-IX universe is
the same as in the Bianchi-I universe; however, in the Bianchi-IX universe there is also the
©gravitoelectricª precession. The presence of this term (26) is connected with the presence
of a spatial curvature in the Bianchi-IX universe, in contrast to the Bianchi-I universe. It is
connected with the fact that the anholonomity coefˇcients are nonvanishing in the Bianchi-IX
universe.

Now, let us discuss what happens with the precession of the Dirac particles in the Bian-
chi-IX universe, evolving towards the cosmological singularity. As was discovered at the end
of the sixties, the Bianchi-IX universe approaches the singularity in an oscillating way [3,4],
and these oscillations have chaotic character [13]. The evolution towards the singularity can
be described by the subsequence of the periods when the universe behaves like a Kasner
universe (16), (17), separated by time intervals when one Kasner regime is substituted by
another one. Let us remind how these changes occur. The Kasner indices p1, p2, and p3 can
be expressed through the LifshitzÄKhalatnikov parameter u [10] as

p1 = − u

1 + u + u2
, p2 =

1 + u

1 + u + u2
, p3 =

u(1 + u)
1 + u + u2

, (27)

where u > 1. The perturbative terms in the Einstein equations, connected with the spatial
curvature, induce the transition to another Kasner regime (which is called ©epochª [1, 3]).
Such that

p′1 = p2(u − 1), p′2 = p1(u − 1), p′3 = p3(u − 1). (28)
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It means that if during the preceding epoch, the universe is expanding along the ˇrst axis and
contracting along the second and the third axes, in the successive epoch it begins expanding
along the second axis; i.e., the ˇrst and the second axes change their roles. There is another
type of transition when the parameter u becomes less than 1. In this case, the change of the
©Kasner eraª occurs [1, 3]. This change is described by the following formula:

p′1 = p1

(
1
u

)
, p′2 = p3

(
1
u

)
, p′3 = p2

(
1
u

)
. (29)

The transition from one Kasner era to another can be described by the mapping transformation
of the interval [0, 1] into itself by the formula

Tx =
{

1
x

}
, xs+1 =

{
1
xs

}
, (30)

where curly brackets stand for the fractional part of a number. This transformation belongs to
the so-called expanding transformations of the interval [0, 1], i.e., transformations x ∼ f(x)
with |f ′(x)| > 1. Such transformations possess the property of exponential instability: if
we take initially two close points, their mutual distance increases exponentially under the
iterations of the transformations. It is well known that the exponential instability leads to the
appearance of strong stochastic properties [13].

Now, let us describe what happens with our angular velocities Ω(1) and Ω(2) when the
universe oscillating approaches the singularity. The expression for Ω(2) can be written as

Ω1̂
(2) =

γ

(γ + 1)t
v2̂v3̂

1 − u2

1 + u + u2
,

Ω2̂
(2) =

γ

(γ + 1)t
v1̂v3̂

2u + u2

1 + u + u2
, (31)

Ω3̂
(2) = − γ

(γ + 1)t
v1̂v2̂

1 + 2u

1 + u + u2
.

It is easy to show that after the change of the Kasner epoch, the new expressions for the
components of the velocity can be obtained by substitution u → −u in this equation. It
means that the ˇrst component does not change the sign, the third component changes the
sign, while the second component changes the sign if u > 2.

After the change of the Kasner era, all the components of the velocity Ω(2) just change
the sign, preserving the absolute values, as it follows immediately from (29).

The leading terms for the components of the velocity Ω(1) are

Ω1̂
(1) ∼ −v1̂(t)

(
−1− 2u

1+u+u2

)
,

(32)

Ωb̂
(1) ∼ vb̂(t)

(
−1− 2u

1+u+u2

)
, b = 2, 3.

The change of epochs boils down to

Ω2̂
(1) ∼ −v2̂(t)

(
−1− 2u−2

1−u+u2

)
,

(33)

Ωâ
(1) ∼ vâ(t)

(
−1− 2u−2

1−u+u2

)
, a = 1, 3.
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Curiously, the change of eras leaves leading terms under consideration intact. Thus, we have
seen that the precession of the Dirac particle in the Bianchi-IX universe evolving towards the
singularity also follows a chaotic pattern.

4. DISCUSSION AND OUTLOOK

We have seen that the precession of a Dirac particle spin exists already in the Bianchi-I
universe. Interestingly, the Kasner indices play the role similar to the moments of inertia in
the Euler equation for the rigid body precession. In the Bianchi-IX universe the precession
acquires the chaotic character due to the stochasticity of the oscillatory approach to the
cosmological singularity [3, 4]. Remarkably, the formulae for the changes of the precession
direction are nicely expressible in terms of the LifshitzÄKhalatnikov parameter u.

What physical consequences could it have for the very early Universe?
Let us note ˇrst that precession due to anisotropy of the Universe may be considered as

generated by some effective magnetic ˇeld. The latter may be easily obtained by equating the
angular velocity to that of the Larmor precession. For deˇniteness, in the Bianchi-I universe
it reads, up to cyclic permutations,

H 1̂ =
mγ

2eg(γ + 1)
v2̂v3̂

(
p2 − p3

t

)
. (34)

As a result, the anisotropy of the Universe provides all the Dirac particles with effective
anomalous magnetic moments. In particular, the transitions between the Dirac neutrinos
and their sterile partners may be induced in such a way. Moreover, due to equivalence
principle, these conclusions may be extended to particles of any spin [14] and also to classical
rotators [7]. The latter fact opens the possibility to study the role of the discussed precession
effects for the formation of structures in the very early Universe and angular momentum of
cosmic strings [15].

Also, equivalence principle leads to the precession frequencies of spin and velocity dif-
fering by a factor of 2, so that the helicity is conserved in the noninertial frame rotating
with the same frequency, but it is 
ipped [14] in the inertial frame. This effect is especially
interesting for the massive Dirac neutrinos. If they are produced in the very early Universe as
active ones, the gravity-induced helicity 
ip may turn them to sterile neutrinos which remain
in this state after the Universe becomes isotropic and contribute to fermionic dark matter. As
soon as the rotation period is deˇned by the age of the Universe in the anisotropic phase, the
amounts of sterile and active neutrinos at the end of this phase are, generally speaking, of the
same order:

Nsterile

Nactive
∼ 1. (35)

If the spin happens to perform the rotation for an angle close to π, the velocity will rotate for
the angle close to 2π, and most of the fermions will become sterile:

Nsterile

Nactive
� 1. (36)

This opens, in principle, the possibility to attribute the dark matter to the contribution of light
sterile neutrinos, whose abundance would be much larger than that of thermal ones. The
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validity of (36) would require a sort of ˇne tuning, but not too strong one, as the required
excess of sterile neutrinos is about two orders of magnitude, and the closeness of the rotation
angle to π should be also at the percent level.

The anisotropic metrics, in the case of some scale parameters being much smaller than
others, may provide the model of transitions between spaces of different (effective) dimen-
sion [16Ä18]. The spin dynamics in that case is manifesting the interesting effects [19].
Other interesting directions of investigation could be connected with the study of the spin
precession in the Bianchi-II universes, in the generalized Melvin cosmologies in the presence
of electromagnetic ˇelds [20], and in the double Kasner universes [15]. We hope to study
these topics in detail in future publications.
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