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TWO-LOOP ELECTROWEAK VERTEX CORRECTIONS
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The contributions to the electronÄphoton vertex of two-loop electroweak corrections are calculated.
The relative correction to the parity-violating asymmetry of the M	ller scattering for the case of 11-GeV
electron scattered off the electron at rest is found to be about Ä0.0034 and should be taken into account
at future experiment MOLLER at JLab.
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INTRODUCTION

The need for physics beyond the Standard Model (SM) is clear at least from two ex-
perimental facts: nonzero neutrino mass and the presence of dark matter in the Universe.
The search for this new physics is one of the most active ˇelds of modern physics and has
three major directions: energy, cosmic and precision frontiers. The precision frontier we are
interested in is driven by the indirect searches, looking for impact of new particles on observ-
ables such as scattering cross-section asymmetry causing small deviations from original SM
predictions. The high-precision electroweak experiments involving the parity-violating (PV)
M	ller scattering, electronÄpositron collisions or electronÄnucleon scattering can provide in-
direct access to new physics at multi-TeV scales and play an important complementary role
in the LHC research program. These low-energy experiments tend to be less expensive than
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experiments at the high-energy colliders, but they do require a signiˇcant theoretical input,
part of which we aim to provide in this paper.

One of such experiments, MOLLER [1], studying the parity-violating M	ller scattering,
would allow a determination of the weak mixing angle with an uncertainty of 0.1%, an
improvement of a factor of ˇve in fractional precision compared with the previous E158
measurement. At such precision, any inconsistency with the SM could signal new physics.

In order to match the proposed electroweak experimental precision, it is necessary to
evaluate electroweak radiative corrections (EWC) on the SM observables with at least ∼ 0.1%
precision, which would require contributions to the electroweak cross sections of order up
to O

(
α4

)
. In the Feynman diagram approach, this corresponds to the two-loop calculations.

For the MOLLER experiment, the one-loop EWC can reach up to 65% [2Ä5], so, although
the two-loop corrections are strongly suppressed relative to the one-loop EWC, they still
can potentially contribute up to a few percent. The two-loop corrections for two-to-two
processes are extremely difˇcult to evaluate, in part because of dramatic complications due
to the presence of massive vector bosons in the two-loop integrals, but they can no longer be
dismissed in the new-generation precision experiments.

Starting in 2011, our group has been making a steady progress calculating major gauge-
invariant two-loop contributions to the M	ller parity-violating asymmetry [6Ä9]. We divide
the two-loop EWC to the Born cross section (∼ M0M+

0 ) onto two classes: Q-part induced
by quadratic one-loop amplitudes ∼ M1M+

1 , and T -part Å the interference of Born and
two-loop amplitudes ∼ 2 Re

(
M0M+

2

)
(here index i in the amplitude Mi corresponds to the

order of perturbation theory). The Q-part was calculated exactly in [6] (using the FeynmanÄ
't Hooft gauge and the on-shell renormalization), where we show that the Q-part is much
higher than the planned experimental uncertainty of MOLLER; i.e., the two-loop EWC are
larger than was assumed in the past. The large size of the Q-part demands detailed and
consistent treatment of the T -part, but this formidable task will require several stages. Our
ˇrst step was to calculate the gauge-invariant double boxes [7]. In paper [9], we considered the
EWC arising from the contribution of a wide class of the gauge-invariant Feynman amplitudes
of the box type with one-loop insertions: fermion mass operators (or Fermion Self-Energies
in Boxes), vertex functions (or Vertices in Boxes), and polarization of vacuum for bosons
(or Boson Self-Energies in Boxes). In this paper, we do the next step Å we calculate the
insertions of two-loop vertices to vertices (VV), fermion self-energies to vertices (FSEV), and
double vertices (DV).

The paper is organized as follows. In Sec. 1, we consider the asymmetry in the Born
approximation and introduce the basic notations. In Sec. 2, we calculate two Feynman dia-
grams with extra W - and Z-boson subgraphs (VV). Section 3 is devoted to the diagrams with
lepton mass operators insertions (FSEV). We consider complex vertices (DV) in Sec. 4 and
give numerical estimation of total effect of these contributions in Sec. 5.

1. BASIC NOTATIONS

We consider the process of electronÄelectron elastic scattering, i.e., the M	ller process:

e(p1, λ1) + e(p2, λ2) → e(p′1, λ
′
1) + e(p′2, λ

′
2), (1)

where λ1,2 (λ′
1,2) are the chiral states of initial (ˇnal) electrons and p1,2 are 4-momenta of

initial electrons and p′1,2 are 4-momenta of ˇnal electrons. The ˇrst measurement of the
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parity-violating (leftÄright) asymmetry

A =
dσ−−−− − dσ++++

dσ−−−− + dσ++++ + dσ+−+− + dσ+−−+ + dσ−+−+ + dσ−++− =

=
|M−−−−|2 − |M++++|2∑

λ

|Mλ|2 (2)

in the M	ller scattering was made by E158 experiment at SLAC [10Ä12]. In the lowest
order of perturbation theory in the framework of QED, the matrix element squared which is
summed over polarization states of electrons has the following form:

∑
λ

|Mλ|2 = 8(4πα)2
s4 + t4 + u4

t2u2
. (3)

We use the notation for the kinematic invariants neglecting the electron mass m:

s = 2p1p2, t = −2p1p
′
1, u = −2p1p

′
2, s + t + u = 0. (4)

Thus, here and further we neglect the terms of order O(m2/s) since in MOLLER experiment
it is expected that beam energy is Ebeam = 11 GeV, that is s = 2mEbeam ≈ 0.01124 GeV2.
Sometimes we retain electron mass at intermediate steps of calculations, but in ˇnal results
it survives only as the arguments of collinear logarithm (in form ln

(
s/m2

)
). Within the

Standard Model one has additional contribution in the Born approximation with Z-boson
exchange which gives rise to polarization asymmetry A0:

A0 =
s

2m2
W

A(0)
a

sW
, A(0) =

y(1 − y)
1 + y4 + (1 − y)4

, y =
−t

s
=

1 − c

2
, (5)

where c = cos θ is the cosine of scattering angle θ =
(

̂p1,p′
1

)
in the system of center-of-mass

of electrons; mW is the W -boson mass, and a is the so-called ©weak electron chargeª

a = 1 − 4s2
W . (6)

Now let us recall that sW (cW ) is the sine (cosine) of the Weinberg angle expressed in terms
of the Z- and W -boson masses according to the Standard Model rules:

sW =
√

1 − c2
W , cW =

mW

mZ
. (7)

Thus, the factor a is just a ≈ 0.109, and the asymmetry is, therefore, suppressed by both
s/m2

W and a. Even at Central Region (CR) of MOLLER (at θ ∼ 90◦, i.e., t ≈ u ≈ −s/2),
where the Born asymmetry is maximal, this asymmetry is extremely small

A0 =
s

9m2
W

a

s2
W

≈ 9.4968 · 10−8. (8)

It is the main aim of this paper to estimate the contribution of some classes of two-loop
contributions, which have some logarithmical enhancement. As for the non-enhanced ones Å
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Two-loop vertices to vertices (a, b), fermion self-energies to vertices (c, d), double vertices (eÄh).
Photons are denoted by wavy lines, massive bosons Å by dashed lines, electrons and neutrinos Å by
solid lines. Notations on diagrams show the type of particle (Z, W, ν) and 4-momenta of them

they have an order of (−t/m2
Z)(α/π)2 ≈ 10−11 for CR of MOLLER. Below we consider

contribution to the vertex function ΔVμ for on-mass-shell electrons p2
1 = p′21 = m2 and the

space-like 4-momentum of the virtual photon Q2 = −q2 = −(p1 − p′1)2 � m2 in two-loop
level from the class of the Feynman diagrams containing the intermediate states with W and
Z bosons (see the Figure). Due to vertex renormalization condition ΔVμ|Q2=0 = 0, the
corresponding contribution is proportional to Q2/m2

W,Z . Thus, we restrict ourselves by the
condition

ρ−1
i =

Q2

m2
i

� 1, i = W, Z. (9)

2. VERTEX SUBGRAPHS WITH EXTRA W AND Z BOSONS

The one-loop expression for contribution of WWγ vertex to e(p1) → e(p1 − k) + γ(k)
vertex (see Fig. a) has the form

V a
μ (p1, k) = −ieū(p1 − k)γμω−u(p1)

g2

32π2
Ia(k2), (10)

Ia(k2) =

1∫
0

dy

y∫
0

dx

(
6 ln

m2
W y − k2xx̄

m2
W y

+
k2x(1 − 2x)
m2

W y − k2xx̄

)
, (11)

where ω± = 1 ± γ5, g = e/sW , and e is the electron charge value (e = |e| > 0). Here and
below we use the common notation x̄ ≡ 1− x, ȳ ≡ 1 − y, etc. Analogously, one-loop vertex
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with one additional Z boson (see corresponding subgraph in Fig. b) looks like

V b
μ (p1, k) = −ieū(p1 − k)γμ(a ± γ5)2u(p1)

g2

(4cW )216π2
Ib(k2), (12)

Ib(k2) =

1∫
0

dy

y∫
0

dx

(
−2 ln

m2
Z ȳ − k2xx̄

m2
Z ȳ

+
k2xx̄

m2
Z ȳ − k2xx̄

)
. (13)

Both functions Ia,b(k2) are normalized as Ia,b(0) = 0.
Integrating over 4-momenta of photon k, we get the contribution of (10) into full two-loop

vertex Vμ (see Fig. a) as

ΔV a
μ = −ie

g24πα

(16π2)2
Ia
μ,

(14)

Ia
μ = Ia

1μ + Ia
2μ =

∫
d4k

iπ2

Na
μ

k2(k2 − 2p1k)(k2 − 2p′1k)
Ia(k2),

Na
μ = ū(p′1)γλ(p̂′1 − k̂ + m)γμ(p̂1 − k̂ + m)γλω−u(p1), (15)

where two terms Ia
1,2μ in (14) correspond to two terms in (11). Omitting the terms of order

O(ρ−2
i ), we write down the contribution Ia

1μ as

Ia
1μ = 6

1∫
0

yȳ dy

∫
d4k

iπ2

Na
μ

m2
W (k2 − 2p1k)(k2 − 2p′1k)

∣∣∣∣
|k2|�m2

W

. (16)

Using the Feynman parameters trick, one can integrate over loop momenta k and obtain the
result as a sum of ultraviolet ˇnite (UV-ˇnite) and ultraviolet divergent (UVD) parts:

Q2

m2
W

1∫
0

xx̄

(
ln

m2
W

b2
− 1

)
dx + UVD-part,

where b2 = (p1x + p′1x̄)2 = m2 + Q2xx̄. Here and below we use the same notations for
unrenormalized and renormalized quantities. Thus, after renormalization of Ia

1μ, we obtain
the expression

Ia
1μ =

Q2

m2
W

ca
1ū(p′1)γμω−u(p1), ca

1 =
1
3

ln
m2

W

Q2
+

7
18

= 5.0406. (17)

Here and everywhere below the number value corresponds to CR of MOLLER.
Second term Ia

2μ in (14) can be written as

Ia
2μ =

1∫
0

yȳ dy

y∫
0

dx
1 − 2x

1 − x

∫
d4k

iπ2

Na
μ

(k2 − σ2)(k2 − 2p1k)(k2 − 2p′1k)
, (18)
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where σ2 = m2
W y/(xx̄). Again using standard manipulations, we arrive at

Ia
2μ = ū(p′1)γμω−u(p1)

1∫
0

yȳ dy

y∫
0

dx
1 − 2x

1 − x

1∫
0

dx1

1∫
0

2y1 dy1×

×
[
ln

Λ2

Da
− 3

2
− Q2

Da
(1 − y1x1)(1 − y1x̄1)

]
, (19)

where Da = y2
1b

2
a + σ2ȳ1, b2

a = (x1p1 + x̄1p
′
1)

2 = m2 + x1x̄1Q
2, and Λ is the UV-re-

gularization parameter. Applying the renormalization procedure, we obtain

Ia
2μ =

Q2

m2
W

ca
2ū(p′1)γμω−u(p1),

ca
2 = −

1∫
0

dx1

1∫
0

2y1 dy1

1∫
0

yȳ dy

y∫
0

dx
1 − 2x

1 − x
× (20)

×
[
ρW ln

(
1 +

1
ρW

x1x̄1y
2
1xx̄

yȳ1

)
+

ρW xx̄(1 − y1x1)(1 − y1x̄1)
ρW yȳ1 + y2

1xx̄x1x̄1

]
= −0.0930.

The ˇnal expression for contribution of W -vertex subgraph to the vertex function (see Fig. a) is

ΔV a
μ = −ie

Q2

m2
W

g24πα

(16π2)2
(ca

1 + ca
2)ū(p′1)γμω−u(p1). (21)

Contribution of Z-vertex subgraph (see Fig. b) has the form

ΔV b
μ = −ie

g28πα

(4cW )2(16π2)2
Ib
μ,

Ib
μ =

∫
d4k

iπ2

N b
μ

k2(k2 − 2p1k)(k2 − 2p′1k)
Ib(k2), (22)

N b
μ = ū(p′1)γλ(p̂′1 − k̂ + m)γμ(p̂1 − k̂ + m)γλ(a ± γ5)2u(p1).

In the similar way, we obtain for contribution of Z-vertex subgraph to the vertex function

ΔV b
μ = −ie

Q2

m2
Z

g28πα(1 ± a)2

(4cW )2(16π2)2
(cb

1 + cb
2)ū(p′1)γμu(p1), (23)

where

cb
1 =

2
9

ln
m2

Z

Q2
+

7
27

= 3.4164,

cb
2 = −

1∫
0

dx1

1∫
0

2y1 dy1

1∫
0

yȳ dy

y∫
0

dx
1 − 2x

1 − x
×

×
[
ρZ ln

(
1 +

1
ρZ

x1x̄1y
2
1xx̄

yȳ1

)
+

ρZxx̄(1 − y1x1)(1 − y1x̄1)
ρZyȳ1 + y2

1xx̄x1x̄1

]
= −0.0944. (24)
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3. ELECTROWEAK ELECTRON MASS OPERATOR INSERTION
TO THE VERTEX FUNCTION

Now let us consider the set of the Feynman diagrams of vertex type containing electron
Mass Operator (MO) with internal Z- or W -bosons insertions (see Fig. c, d). The relevant
contribution to the vertex function has the form

ΔV MO
μ = −ie

α

2π

[
V Z

μ + V W
μ

]
, V i

μ =
∫

d4k

iπ2

N i
μ

k2(k2 − 2p′1k)
, (25)

where i = Z, W , and the numerator N i
μ is

N i
μ = ū(p′1)γλ(p̂′1 − k̂ + m)γμ(p̂1 − k̂ + m)γλc(i)u(p1)M i(k, p1), (26)

with

c(Z) =
2g2(a ± γ5)2

(4cW )28π2
, c(W ) =

g2ω−
16π2

. (27)

Mass operator M i(k, p1) of the off-mass-shell electron looks like

M i(k, p1) =

1∫
0

x1x̄1 dx1

1∫
0

dz

m2
i − x1z(k2 − 2p1k)

. (28)

The standard Feynman procedure of joining the denominators and the loop momentum inte-
grating gives us

V i
μ =

1∫
0

x̄1 dx1

1∫
0

dz

z

∫
d4k

iπ2

Nμ

k2(k2 − 2p′1k)(k2 − 2p1k − σ2
i )

,

(29)

Nμ = ū(p′1)γλ(p̂′1 − k̂ + m)γμ(p̂1 − k̂ + m)γλu(p1), σ2
i =

m2
i

x1z
,

which can be simpliˇed to the form

V i
μ = ū(p′1)γμu(p1)Vi,

(30)

Vi =

1∫
0

x̄1 dx1

1∫
0

dz

z

1∫
0

dx

1∫
0

2y dy

(
ln

Λ2

Di
− Q2

Di

)
,

where Di = b2y2 + xyσ2
i . After renormalization and expansion on powers of Q2/m2

i , we
obtain

Vi = −Q2

m2
i

1∫
0

x̄1 dx1

1∫
0

dz

z

1∫
0

dx

1∫
0

2y dy

[
x1zyx̄ +

m2
i

Di
(ȳ − y2xx̄)

]
. (31)
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Final expression for the contribution to the vertex function (see Fig. c, d) is

ΔV MO
μ = ie

α

2π

[
Q2

m2
Z

cZ
3

g2

(4cW )24π2
(1 ± a)2ū(p′1)γμu(p1) +

+
Q2

m2
W

cW
3

g2

16π2
ū(p′1)γμω−u(p1)

]
, (32)

with

cZ
3 =

1
6

ln
m2

Z

Q2
+

2
3

= 3.0345, cW
3 =

1
6

ln
m2

W

Q2
+

2
3

= 2.9925. (33)

4. CONTRIBUTION OF DIAGRAMS CONTAINING WWγ, WWγγ VERTICES

Below we consider diagrams containing WWγγ, WWγ vertices only because their con-
tributions are associated with logarithmic enhancement. Let us consider the Feynman diagram
with virtual photon which is emitted from the initial electron and absorbed by the ˇnal electron
(see Fig. e). The relevant contribution to the vertex function is

ΔV e
μ = ie

4παg2

2(16π2)2
V e

μ ,

V e
μ =

∫
d4k

iπ2

1
(k2 − λ2)(k2 − 2p1k)(k2 − 2p′1k)

× (34)

×
∫

d4k1

iπ2

VσμηNησ

k2
1((k + k1 − p1)2 − m2

W )((k + k1 − p′1)2 − m2
W )

,

where λ is the photon mass, and

Vσμη = gσμ(2p1 − p′1 − k − k1)η + gμσ(2p′1 − p1 − k − k1)σ+
+ gησ(−p1 − p′1 + 2(k + k1))μ, (35)

Nησ = ū(p′1)γλ(p̂′1 − k̂)γη k̂1γσ(p̂1 − k̂)γλω−u(p1).

Doing the similar treatment as it was done above, one can integrate over loop momentum k1,
renormalize the amplitude of this subgraph and obtain

V e
μ =

3Q2

2m2
W

∫
d4k

iπ2

ū(p′1)γλ(p̂′1 − k̂)γμ(p̂1 − k̂)γλω−u(p1)
(k2 − λ2)(k2 − 2p1k)(k2 − 2p′1k)

∣∣∣∣∣
|k2|�m2

W

. (36)

After integration over k one gets

V e
μ =

3Q2

2m2
W

1∫
0

dx

1∫
0

2y dy

[
ln

m2
W

De
− Q2

De
(ȳ + y2xx̄)

]
, (37)
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where De = y2b2 + λ2ȳ. Further, we use simple integrals

1∫
0

2y dy

y2b2 + λ2ȳ
=

1
b2

ln
b2

λ2
,

1∫
0

Q2

b2
dx = 2 ln

Q2

m2
,

1∫
0

Q2xx̄

b2
dx = 1,

1∫
0

Q2

b2
ln

b2

m2
dx = ln2 Q2

m2
− π2

3

and obtain

ΔV e
μ = ie

3Q2

2m2
W

ū(p′1)γμω−u(p1)
4παg2

2(16π2)2
Ie,

(38)

Ie = 2 +
π2

3
+ ln

m2
W

Q2
− 2 ln

Q2

m2

(
ln

m2

λ2
− 2

)
− ln2 Q2

m2
= −2 ln

Q2

m2
ln

m2

λ2
− 40.388.

The diagrams in Figs. fÄh have a general enhancement factor which is associated with
the collinear photon emission in vertex. Let us demonstrate this in general. The common
structure for all three diagrams contains the emission of photon with momentum k from initial
electron. This leads to the following structure of the amplitude:

V f,g,h
μ =

e

16π2

∫
d4k

iπ2

ū(p′1)O
λ
μ(p̂1 − k̂ + m)γλu(p1)
k2(k2 − 2p1k)

, (39)

where Oλ
μ corresponds to the remaining part of the Feynman diagram and is different for each

diagram. We note that the dominant contribution to this integral comes from the integration
region of small photon momentum (i.e., |k2| � m2

W ), and thus we can omit k in the remaining
part of vertex amplitude, containing the momenta of a W boson. Joining the denominators,
we have

V f,g,h
μ =

e

16π2

1∫
0

dx 2x̄ ū(p′1)p1λ Oλ
μ

∣∣
k∼xp1

u(p1)
∫

d4k

iπ2

1

((k − xp1)2 − m2x2)2

∣∣∣∣∣
|k2|�m2

W

,

where we approximated the traces of the amplitude by taking it in collinear region (i.e.,
putting k → xp1). This gives us the possibility to integrate over d4k and obtain

V f,g,h
μ ≈ e

16π2

1∫
0

dx 2x̄ ū(p′1)p1λ Oλ
μ

∣∣
k∼xp1

u(p1)
(

ln
m2

W

m2x2
− 1

)
. (40)

The diagram containing the WWγγ vertex (see Fig. f) gives

ΔV f
μ = 2ieR

4παg2

32π2
S λσ

μν pν
1

∫
d4k1

iπ2

Nf
λσ

k2
1 (k2

1 − 2p1k1 − m2
W ) (k2

1 − 2p′1k1 − m2
W )

, (41)

Nf
λσ = ū(p′1)γσ k̂1γλω−u(p1), Sμνλσ = 2gμνgλσ − gμλgνσ − gμσgνλ,

R ≈ e

16π2
L, L = ln

m2
W

m2
.
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The loop momentum integral does not have ultraviolet as well as infrared divergences. Stan-
dard manipulations lead to

ΔV f
μ = 2ie

Q2

4m2
W

4παg2

2(16π2)2
L ū(p′1)γμω−u(p1). (42)

For the Feynman diagram with WWγ vertex shown in Fig. g we have

ΔV g
μ = −2iR

4παg2

32π2

∫
d4k1

iπ2

ū(p′1)γη k̂1γλω−u(p1)V λνσ
1 V2

ησ
μ p1ν

k2
1 (k2

1 − 2p1k1 − m2
W )2 (k2

1 − 2p′1k1 − m2
W )

, (43)

where vertices have the form

V λνσ
1 = (2p1 − k1)λgνσ + (2k1 − p1)νgσλ + (−p1 − k1)σgλν ,

(44)
V2

ησ
μ = (−p1 − p′1 + 2k1)μgησ + (2p1 − p′1 − k1)ηgσ

μ + (2p′1 − p1 − k1)σgη
μ.

Retaining in the numerator the terms quadratic over loop momenta, one gets

ΔV g
μ = −iR

αg2

2π
ū(p′1) γμω−u(p1)

1∫
0

xdx

1∫
0

y2 dy
Q2

Dg

(
−13

4

)
, (45)

where Dg ≈ ym2
W . Finally, we have for the contribution of the Feynman diagram shown

in Fig. g:

ΔV g
μ = −ie

Q2

m2
W

L
αg2

32π3

13
36

ū(p′1) γμω−u(p1), (46)

and the diagram shown in Fig. h gives the similar result:

ΔV h
μ = −ie

Q2

m2
W

L
αg2

64π3

67
36

ū(p′1) γμω−u(p1). (47)

5. NUMERICAL CONTRIBUTION TO THE LEFTÄRIGHT ASYMMETRY

Collecting the result of considered two-loop contributions, one can put the total result in
the form

ΔV a+b
μ + ΔV MO

μ + ΔV e+f+g+h
μ = BZKZ

μ + BW KW
μ , (48)

where

KZ
μ = ie

Q2

m2
Z

(1 ± a)2
αg2

(4cW )2256π3
ū(p′1)γμu(p1), (49)

KW
μ = ie

Q2

m2
W

αg2

256π3
ū(p′1)γμω−u(p1), (50)



Two-Loop Electroweak Vertex Corrections for Polarized M�ller Scattering 507

and the coefˇcients look like

BZ = −8(cb
1 + cb

2) + 32cZ
3 = 70.5285,

(51)

BW = −4(ca
1 + ca

2) + 8cW
3 + 3Ie,fin + L

(
1 − 26

9
− 67

9

)
= −312.382.

Let us note by index C the contributions investigated here, i.e., C = a, b, . . . , h. As
speciˇc corrections to observable parity-violating asymmetry induced by contribution C we
choose the contribution to the asymmetry (ΔA)C and the relative corrections DC

A :

(ΔA)C =
|M−−−−

C |2 − |M++++
C |2∑

|Mλ
0 |2

, (52)

DC
A =

(ΔA)C

A0
=

|M−−−−
C |2 − |M++++

C |2
|M−−−−

0 |2 − |M++++
0 |2

. (53)

The physical effect of radiative effects from contribution C to observable asymmetry is
determined by the relative correction (see [9] for more details):

δC
A =

AC − A0

A0
=

DC
A − δC

1 + δC
, (54)

where the relative correction to unpolarized cross section is δC = σC
00/σ0

00. For two-loop
effects (where δC is small) the approximate equation for relative correction to asymmetry
takes place: δC

A ≈ DC
A .

Contributions to asymmetry of Z and W types are

(ΔA)Z = −16aBZ Q2

m2
Z

αg2π

(4cW )2(16π2)2
,

(55)

(ΔA)W = 4BW Q2

m2
W

αg2π

(16π2)2
,

which give the relevant numerical values

(ΔA)Z = −2.5410 · 10−12, (ΔA)W = −3.1983 · 10−10. (56)

Taking into account that in CR of MOLLER the Born asymmetry A0 = 94.97 ppb, the
numbers for relative corrections DC

A are

DZ
A = −0.0000267, DW

A = −0.0033677. (57)

We can see that effects have the same negative sign, the ˇrst is rather small, but the second
one is at the edge of the region of planned one per cent experimental error for MOLLER,
and thus will be important for future analysis of MOLLER experimental results.
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