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KOMIIBIOTEPHLIE TEXHOJIOTHU B ®U3UKE

ESTIMATION OF MAGNETIC FIELD GROWTH AND
CONSTRUCTION OF ADAPTIVE MESH IN CORNER
DOMAIN FOR MAGNETOSTATIC PROBLEM
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P. N. Sysoev, M. B. Sadovnikova, I. P. Yudin
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A magnetostatic problem arises in searching for the distribution of the magnetic field generated
by magnet systems of many physics research facilities, e.g., accelerators. The domain in which the
boundary-value problem is solved often has a piecewise smooth boundary. In this case, numerical
calculations of the problem require the consideration of the solution behavior in the corner domain. In
this paper an upper estimate is obtained for the maximum possible growth of the magnetic field in the
corner domain of vacuum. Based on this estimate, we propose a method of condensing the differential
grid near the corner domain of vacuum. An example of the modeling problem calculation in the corner
domain is given.

IMoct HOBK 3 A YU M THUTOCT TUKH BO3HHK €T MU MOUCKE P CIpefeseHHs M IHHUTHOTO IOJId, CO-
31 B €MOIO M THUTHOH CHUCTEMOIi, BXOIAILEH B COCT B MHOIHX (DPU3MYECKHUX YCT HOBOK, H IIPHMEp, YCKO-
pureneif. Y cro ObB €T, 4TO OOJI CTh, B KOTOPOW peml eTcs Kp €B S 3 1 Y4 M THUTOCT THKH, UMEeT
KyCOYHO-IJT AKYIO Ip HHUIY. B T KHUX CIIyd SIX NpH YHUCIEHHOM H XOXIEHHH peleHus 3 I 4Yi HeoOXo-
IUMO YYHUTBIB Thb X P KTE€p €ro IMoBeJeHNsd B OKPECTHOCTU «YITIOBOM TOUKH».

B 1 HHOIl p 6OTe X ercsd BepXHssd OLEHK JOIMYCTHMOTO POCT M THHUTHOTO IO B OKPECTHOCTH
«yIJIOBOM TOYKH» B OOJ CTM B KyyM ; H OCHOB HMU TIOMY4EHHOH OLIEHKM MpEI I' eTCd METOH CTy-
IIEHHS] P 3HOCTHOM CETKH BOIIM3M «yINIOBOW TOYKM» B 00T CTH B KyyM . [IpuBomguTcs mpuMmep p cdeT
MOJIENIBHOM 3 11 4M B 00 CTH, COOEpX ILell yIIIOBYIO TOUKY.

PACS: 02.60.Lj; 29.30.A]j

INTRODUCTION

Many physics research facilities use magnet systems of various configurations. An exam-
ple is a system of spectrometric magnets. It is very important to know with a good accuracy
the distribution of the magnetic field generated by this system. The problem is actually re-
duced to formulation of a magnetostatic problem of finding the distribution of the magnetic
field generated by the magnet system under consideration. Since the magnetic system has
a complicated configuration, the solution of the problem is usually sought using numerical
methods. The domain in which the boundary-value problem is solved during calculations of
a particular magnet system often has a piecewise smooth boundary. In this case the solution
of the problem or the derivative solutions can have a singularity. Therefore, the numerical
search for the solution requires the use of special methods.
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1. ESTIMATION OF THE MAGNETIC FIELD GROWTH

Let us show that the magnetic field in the corner domain of vacuum §2,, of a ferromagnetic
satisfies the condition

H(s)gColnl—&—w(s), (1)

S

where Cj is a constant; w (s) is a bounded function, and r, is the distance to the corner and
s € Q,. The integral formulation of the magnetostatic problem [1,2] allows the magnetic
field to be represented as (on the assumption that a solution exists)

H(s) = He (s) V. / (M (p), VpU (s, p)) doy, @)
Qf

where H¢ is the field from the current sources, M is the ferromagnetic magnetization vector,

1 1
the function ¥ (s, p) is equal to 1 or o Inrg, for the three-dimensional and the two-
Tsp ™

dimensional case, respectively, and )y is the ferromagnetic domain. The magnetization
vector is defined as M = pox (H)H = po (u (H) — 1) H, where o is a constant, x (H) is

the magnetic susceptibility, and p (H) is the permeability of the ferromagnetic. Given high
fields (H — o0), the representation [3,4] p(H) = 1+ T~ when H — oo is valid,

where A and B are positive constants. Consequently, when H — oo, M = |M]| is limited by
a constant My = pgA. Let us consider the 2D case. From (2) we obtain

H(s) = He (5) — -V, Q/ (M. —) dv,.

Here the first term is limited, and we therefore estimate the second term
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where T = z, — 2, and § = y, — ys. We calculate the

integral
1 1 1
—dv, = | —duv, + —du,,
/ 2 / 2, / 2

Qf vs Q‘f /’U(s

where vs = Q¢ NS5 (Q) is the angular sector at the corner
point @ (see Fig. 1).

The integral over the domain Qf/vs will be limited,
and we therefore consider only the integral over the do-
main vg

Fig. 1. The angular sector

wo 4 d
1 T, dr
—dv, = / d / PP =
/ rgp P / ¥p / 7"1% + 12 — 21,75 COS Pgp

Qf
1 0/rs

_/Od / tdt +/ tdt
= Pp 1+ 2 — 2t cos s, 1+ t2 — 2t cos psp
0 1

0

where ¢ = r,/rs. Then we use the expression for the generating function [5]

+oo
Z P, (cospsp) t™, lt] <1,
1 _ m=0
V1412 —2tcos s, oo
Z P (cospep)t™™ 1, [t < 1
and obtain m=
1 i ; too 8/rs +o0
/ervp = /dcpp /tdt > PuPthtm + / tdt PPyt~ bt
Q,f sp 0 0 m,k=0 1 m,k=0
0 = Om K = Am k ( Ts m+k
e 3 Stmh s 3 Il (5) ) -
T m)k:Om—t—k—FQ m+k¢0m—|— 0

Ot (s), )

T's

wo
where i = [ P, (cospgp) Pr (cos ¢sp) dpp, Ch is a constant, and ws (s) is a bounded
0

function. Thus, the validity of expression (1) is ascertained.

2. METHOD OF GRID CONDENSING IN THE CORNER DOMAIN

In [6-8], there are examples of constructing a differential grid for some boundary-value
problems in corner domains. The main idea is to condense the differential grid or finite ele-
ments for obtaining an admissible problem approximation error. This error involves integrals
over elementary domains estimated by the quantities of the form Chf [|ully. ;> where h; is the
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diameter of the ith elementary domain or grid cell, 3 is a positive number, ||ul|, ; is the norm
of the function with the kth derivative in this domain, and C is a constant independent of all
these factors. Then we can require, for example, that quantities Chf [|ully. ; be identical in the

domain under consideration. To this end, hf can be decreased in inverse proportion to [|ulf;, ;
on approach to the singular points. We demonstrate the validity of the following statement.
V (s) is the solution of the magnetostatic problem in the integral formulation found by a
numerical method and H (s) is the exact solution. Then the following estimate is valid:

IV =8I, ) < W (1l b+ colnh + cs), “)

where c¢1, co, and c3 are constants and h is the diameter of the domain D, which is a
differential grid cell containing the ferromagnetic corner.
By virtue of (2), the following expression for V (s) holds:

V(s)=H v Z/( ”]‘)dv, (5)

Jlg

where H; is the field in the cell €;, 7 = 1,...,N; U Q2 = Qy; and ry,, is the distance
j=1
from the point s to the point p; € ;. We consider the difference

V(s)-H V Z/( M (H (py)), iSpJ> dv.
J 1Q SPj

Since the quantity |M| < My is limited, it follows that M (H;) — M (H (p;))| < 2M, for
j=1,...,N. Thus, we obtain

8M0 8M0 ol do , 8My ol dv
'V (s) - 5
1 9P7 ™ i=1 rspj
=1 0,n55(Q) 77 0;/85(Q)
As a result, using the estimate obtamed above, we arrive at the expression
1
|V(s)—H(s)\<Cglnr— + we (s) . (6)

It remains to estimate |V — H||2L2( py> Where the domain D is the S5 (Q) — d-domain of the
corner point (). Using (6), we obtain

vV — H||iQ(D) :/|V(s) —H (s)]*dv < h? (e1 1n2h+021nh+03),

where h = 26, and ¢y, co, and c3 are constants. We propose a differential grid condensing
method

h1 1 Tm 2

/ In — dx:do, /
x

0

Tm—1
Here dj is a constant; M is the number of partitions along the coordinate axis (OX or OY')
in the corner domain; h,, is the grid spacing, and z,, is the coordinate of the grid node along

In—| de=dy, Twm —Tm-1=hm, m=12 ..., M.
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the OX or OYaxis (the origin of the coordinates is at the corner point), || < 1. In model
numerical calculation tasks with a corner point on the course, building a mesh grid of the
differential in accordance with (6) has yielded good results.

3. THE SOLENOID-TYPE MAGNETIC FIELD DETECTOR MODELING

Magnetic systems are very important parts [9, 10]. To create the necessary configuration
of magnetic field, the repeated solution of nonlinear boundary value problem of magnetostatics
is needed. In the present work, we consider the problem of creation of homogeneous map of
magnetic system of solenoidal type (see Fig.2). As a result of optimization, the geometric
parameters of magnetic system were chosen in such a way so as to get maximal size of the
domain of homogeneity of the magnetic field.

5 million
x tetrahedral
elements

Fig. 2. Magnet geometry Fig. 3. Mesh

Surface contours: BMOD jg
1.397681E+000

2.897676E-002

Fig. 4. Field distribution
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Due to symmetry, in the modeling we use only 1/24 part of the geometry with corre-
sponding boundary conditions. The calculations were performed (using two software prod-
ucts: TOSCA and native MFC) by the method of finite elements on tetrahedral mesh with
5000000 elements (see Fig. 3).

The distribution of the module of magnetic field on the surface of ferromagnetic is shown
in Fig.4. It is seen that maximal value of magnetic field is reached in the corner points
(1.3 7).

The density of the current in winding J = 9.956410099 - 10¢ A/m2. The cross section of
coil S = 0.04 x 4.7 m. The total current I = 1.871805098 - 105 A. The field in the center of
magnetic system Bcepter = 0.5 T.

Z IV
Map contours: J25s - Map contours: J25
BMOD/0.499994 i | BMOD/O.499994 ]
1.001000E+000 ] | 1.005000E+000
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"".‘I""I"_-]'I' '-|'lll|X 11 X
|
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9.990000E-001 1 9.950000E-001
Fig. 5. Field homogeneity is +0.1% Fig. 6. Field homogeneity is +0.5%

In Figs.5 and 6 the domains with the degrees of homogeneity of magnetic field are 0.1%
and 0.5%, correspondingly. The black continuous line shows the homogeneity of 0.1% is
needed. In Fig.5, the scale of magnetic field has site from 0.99-1.001 T, in Fig.6 from
0.998-1.002 T.

CONCLUSIONS
1. The upper estimate for the admissible growth of the magnetic field H (p) in the corner
1
domain of vacuum Q, H (p) < Coln — 4 w (p), where Cj is a constant, w (p) is a bounded
T

function, and 7, is the distance to thg corner, is asymptotically obtained for the case of
pw(H) — 1 when H — oo.

2. A method of condensing the differential grid in the corner domain of vacuum €2, is
proposed, which appreciably improves the accuracy of the calculated solution.

3. As a result of optimization, the geometric parameters of the solenoid-type magnetic field
detector were chosen in such a way so as to get maximal size of the domain of homogeneity
of the magnetic field.
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