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In this paper we present the results of the implementation of the decay t → b f1f̄
′
1 into the SANC

system (f1 is a massless fermion). The new aspect of the work is the combination of QCD and EW
corrections. All calculations are done at the one-loop level in the Standard Model. We give a detailed
account of the new procedure Å the forming of a class of JAW,WA functions. These functions are
related to the procedure of extraction of infrared and mass-shell singular divergences. The emphasis
of this paper is on the presentation of numerical results for various approaches: complete one-loop
calculations and different versions of pole approximations.
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INTRODUCTION

In this paper we review the state-of-art of the implementation of NLO QCD and elec-
troweak (EW) radiative corrections (RC) to the charge current decays

F → ff1f̄
′
1(γ, g) (1)

(where F and f denote massive fermions and f1 and f ′
1 denote massless fermions) within the

framework of the SANC system [1, 2].
This work is a continuation of our previous one [3], devoted to the EW Radiative Cor-

rections (EWRC) to t → bl+νl decay. Here we extend it in two directions: addition of quark
channels, e.g., t → bud̄, etc., and of the NLO QCD corrections, see also [4] and references
therein. The implementation of QCD corrections into SANC for some 3- and 4-leg processes
is presented in [5].

Recall that in SANC we always calculate any one-loop process amplitude as annihilation
into vacuum with all 4-momenta incoming. Therefore, the derived form factors for the
amplitude of the process tbūd̄ → 0 after an appropriate permutation of their arguments may
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Fig. 1. QCD node: t → bf1f̄
′
1

be used for the description of NLO corrections of the single top production processes, e.g.,
s-channel ud → tb, and t-channel ub → dt.

The QCD tree for the t → bf1f̄
′
1 processes is shown in Fig. 1.

A similar tree was already shown in the previous paper [3] for the EW branch. Nowadays,
within SANC we follow the strategy to present both EW and QCD NLO RC simultaneously,
realizing them as the SSFM (Standard SANC (FORM/FORTRAN) Modules). We use FORM
version 3.1 [6]. The modules are united into two packages (CC and NC). The concept of
modules is decribed in [7], ibidem the previous versions 1.20, see also [8].

The packages are reachable for users from our project homepages [9]. Both EW and QCD
RC modules of these processes t → bf1f̄

′
1 will be put into version 1.30 of the CC package.

A ˇrst attempt to combine QCD and EW corrections within the SANC project was done
for DY CC processes and presented in talks at the ATLAS MC Working Group [10] and later
on in the paper [11].

This paper is devoted to the complete NLO QCD and EW radiative corrections to the 4-leg
top quark decays t → bf1f̄

′
1(γ, g). We also discuss how the SANC results of complete one-loop

calculations are compared with the results of various approximate cascade approaches.
These exercises are necessary in order to make the right choice in the future: how we

would sew together NLO 4-leg and 3-leg building blocks, available in SANC [1]. For example,
4-leg and 3-leg blocks in the description of a cascade of the type f1f̄1 → HZ; Z → μ+μ−

or two 4-leg blocks in ud → bt; t → blν; the results of these studies will be published
elsewhere.

This paper is organized as follows. In Sec. 1 we review the complete calculations as
adopted within the SANC framework. The standard narrow width cascade approach, that with
a complex W boson mass, and the cascade in the pole approximation with a ˇnite W width
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are presented in Sec. 2. Numerical results are collected in Sec. 3. Finally, at the end of the
paper we present our conclusions.

1. COMPLETE EWRC

1.1. The Separation of QED Corrections. The complete one-loop EW corrections for
t(p2) → b(p1) + u(p3) + d̄(p4) decay are calculated by the SANC system as described in
Subsec. 2.5 of [1]. The covariant amplitudes A and helicity amplitudes Hijkl are given by
Eqs. (43)Ä(46) with Dμ = −(p1 + p2)μ and Eqs. (47)Ä(50), respectively. They are expressed
in terms of four scalar form factors: FLL, FRL, FLD, FRD. It is useful to extract the QED
part from the complete EW amplitude. Only the LL form factor contains both QED and weak
contributions:

FLL = 1 +
e2

16π2
F̃QED

LL +
g2

16π2
F̃weak

LL . (2)

The other three form factors contain only weak parts. There exists no gauge-invariant sep-
aration of the QED part from the entire LL form factor. We choose it in the simplest and
most natural form:

F̃QED
LL

= 2
[
−QuQdQ

2C0(−m2
u,−m2

d, Q
2; mu, λ, md) − QuQt(T 2+

+ m2
t )C0(−m2

u,−m2
t , T

2; mu, λ, mt) + QuQbU
2C0(−m2

u,−m2
b , U

2; mu, λ, mb)+

+ QdQt(U2 + m2
t )C0(−m2

d,−m2
t , U

2; md, λ, mt)−

−QdQbT
2C0(−m2

d,−m2
b , T

2; md, λ, mb)−QtQb(Q2+m2
t )C0(−m2

t ,−m2
b, Q

2; mt, λ, mb)
]
−

− 3
2

[
Q2

uaf
0 (mu) + Q2

da
f
0(md) + Q2

t a
f
0 (mt) + Q2

ba
f
0 (mb)

]
+

+ Q2
u lnλ(m2

u) + Q2
d lnλ(m2

d) + Q2
t lnλ(m2

t ) + Q2
b lnλ(m2

b), (3)

with C0 being the standard PassarinoÄVeltman (PV) function [12, 13] and

af
0 (m) = ln

(
m2

μ2

)
− 1, lnλ(m2) = ln

(
m2

λ2

)
, (4)

where μ is the 't Hooft (renormalization) scale and λ is a photon mass. The natural choice is
μ = MW . Furthermore, in Eq. (3) we use the standard SANC deˇnitions: Qf = 2I3

f with I3
f

being the weak isospin and

Q2 = (p1 + p2)2, T 2 = (p2 + p3)2, U2 = (p2 + p4)2, (5)

with momenta pi being deˇned in Fig. 2.
The form factor F̃QED

LL , as deˇned by Eq. (3), contains all IR divergences in four lnλ(m2)
functions, one for each photon emission from an external line, and in six C0 functions, one for
each photon radiation interference term. Moreover, all logarithmic mass singularities should
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Fig. 2. Example of a Jd
WA(Q2, T 2;

b, t̄, d, ū, W ) function

be concentrated in the QED part and all weak con-
tributions must not contain logarithmic mass singu-
larities even at the amplitude level, having nothing
to do with KinoshitaÄLeeÄNauenberg (KLN) theo-
rem. Furthermore, the gauge non-invariance of the
QED/weak separation is made manifest by the pres-
ence of the 't Hooft scale. We prefer to keep terms
with af

0 (m) in the QED contribution since they are
mass singular.

1.2. Auxiliary Functions JAW,WA. To calculate
the weak part of the RC we introduce the set of
auxiliary functions Jd,c

WA,AW related to ®direct¯ and
®cross¯ WA and AW box diagrams of the kind
shown in Fig. 2. They are deeply connected to the
procedure of separation of infrared and mass singu-
larities from PV D0 functions in terms of simplest
objects Å the C0 functions. The eventually ®sub-
tracted¯ auxiliary functions Jsub do not contain any singularities and are expressed as linear
combinations of dilogarithms, see [14]. By introducing these functions we prove, ˇrst of all,
that the EW part of the one-loop correction is free from mass singularities and, moreover,
receives a good proˇt in the stability and speed of numerical calculations. Furthermore,
the explicit expressions for these functions are used for the study of ®on-shell-W-mass¯
singularities, introduced and discussed in [15].

The letters u, d, . . . in the ˇgure caption denote particle masses. The ordering of masses
in the argument of Jd

WA into two pairs of heavy (b, t) and light (d, u) quarks is such that the
ˇrst mass in each pair corresponds to the fermion coupled to the photon, thereby leading to
the appearance of a potentially mass singular logarithmic contribution.

The basic deˇnition of the function Jd
WA reads

iπ2Jd
WA(Q2, T 2; b, t̄, d, ū, W ) = μ4−n

∫
dnq

2q · p1

d0 d1 d2 d3
,

where
d0 = (q − p1 − p2)2 + M2

W
, d1 = (q − p2)2 + m2

b ,

d2 = q2, d3 = (q + p3)2 + m2
d.

(6)

For t and t̄ decays one ˇnds eight functions, four direct and four crossed ones. The four
direct ones come in two pairs (Figs. 3 and 4).

The crossed functions may be obtained by a simple permutation of their arguments.
There are four symmetry relations between direct Jd

AW,WA and cross Jc
AW,WA functions:

Jd
AW (Q2, T 2; b̄, t, d̄, u, W ) = Jd

WA(Q2, T 2; b, t̄, d, ū, W ),

Jd
WA(Q2, T 2; t, b̄, u, d̄, W ) = Jd

AW (Q2, T 2; t̄, b, ū, d, W ),

Jc
AW (Q2, U2; b̄, t, u, d̄, W ) = Jc

WA(Q2, U2; b, t̄, ū, d, W ),

Jc
WA(Q2, U2; t, b̄, d̄, u, W ) = Jc

AW (Q2, U2; t̄, b, d, ū, W ).
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Fig. 3. First pair of direct Jd
AW and Jd

WA functions

Fig. 4. Second pair of direct Jd
WA and Jd

AW functions

So, only four functions are independent. Moreover, as seen from the previous relations,
the indices content of the Jd

AW . . . functions (retained for better understanding of their origin
from corresponding Feynman diagrams) is uniquely determined by their arguments. Therefore,
these indices may be dropped in the subsequent presentation of the material. Also, the particle
names will be changed to particle masses in the arguments of these functions.

1.2.1. Steps to Calculate J Functions
• Step: relations for J . Using the standard PV reduction it is possible to establish relations

(exact in masses) between infrared divergent functions (from here and below, we use the usual
notation for particle masses):

D0(−m2
b ,−m2

t ,−m2
u,−m2

d, Q
2, T 2; 0, mb, MW , md), C0(−m2

d,−m2
b, T

2; md, 0, mb)

and infrared ˇnite, but mass-singular functions:

J(Q2, T 2; mb, mt, md, mu, MW ) and C0(−m2
u,−m2

d, Q
2; MW , md, 0).

For direct functions these relations are

J(Q2, T 2; mb, mt, md, mu, MW ) =

= (M2
W + Q2)D0(−m2

b ,−m2
t ,−m2

u,−m2
d, Q

2, T 2; 0, mb, MW , md)+

+ C0(−m2
u,−m2

d, Q
2; MW , md, 0) − C0(−m2

d,−m2
b , T

2; md, 0, mb), (7)
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J(Q2, T 2; mt, mb, mu, md, MW ) =

= (M2
W + Q2)D0(−m2

b ,−m2
t ,−m2

u,−m2
d, Q

2, T 2; MW , mt, 0, mu)+

+ C0(−m2
u,−m2

d, Q
2; 0, mu, MW ) − C0(−m2

t ,−m2
u, T 2; mt, 0, mu). (8)

For the crossed functions we perform the appropriate permutations of the arguments of these
functions.

Then, we calculate the functions J exactly in masses in terms of dilogarithms. Finally,
we take the limit mu, md → 0, neglecting light quark masses everywhere but mass singular
logarithms. These two steps represent rather complicated procedures, which will be described
elsewhere [16].

• Step: Jsub. The mass singularities in arguments of the logarithms may be compensated
by combination with one more C0 function:

Jsub(Q2, P 2; mb, mt, MW ) = J(Q2, P 2; mb, mt, md, mu, MW )−

−
(

1 +
Q2

m2
b + P 2

)
C0(−m2

u,−m2
d, Q

2; MW , md, 0),

Jsub(Q2, P 2; mt, mb, MW ) = J(Q2, P 2; mt, mb, mu, md, MW )−

−
(

1 +
Q2

m2
t + P 2

)
C0(−m2

d,−m2
u, Q2; MW , mu, 0),

where P 2 = T 2 or P 2 = U2. The two mass singular C0 functions appearing in Eq. (9) cancel
in the total expression for the EW correction which proves the absence in it of logarithmic
mass singularities (not KLN theorem!).

• Step: Jsubsub. If we want to neglect the mb mass, we should perform the second
subtraction of a mass singular C0 function C0(−m2

t ,−m2
b, Q

2, MW , mb, 0) that appears in
the limit mb = 0.

Note that only one of Jsub contains an mb mass singularity.

Jsubsub(Q2, P 2; mb, mt, MW ) = Jsub(Q2, P 2; mb, mt, MW )−

− P 2

Q2 + m2
t

C0(−m2
t ,−m2

b , Q
2; MW , mb, 0). (9)

Since we do not want to consider the limit mt = 0, we simply rename the second function:

Jsubsub(Q2, P 2; mt, mb, MW ) = Jsub(Q2, P 2; mt, mb, MW ). (10)

Again, the mb mass singular C0 function C0(−m2
t ,−m2

b , Q
2; MW , mb, 0) cancels in the

total EW correction.
1.2.2. Treatment of On-Shell-W -Mass Singularities. In the course of calculations of the

O(α) EWRC one encounters on-shell singularities which appear in the form of ln (s−M2
W

+
iε). We follow [15] where it was shown that they can be regularized by the W width:

ln(s − M2
W + iε) → ln(s − M2

W + iMW ΓW ). (11)
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Note that the replacement M2
W
− iε → M2

W
− iMWΓW should be done only in the argument

of logarithms which diverge at the resonance s = M2
W

. In this connection we derived for all
Jsubsub functions such a representation in which these divergent logarithms appear only once
and ΓW propagates only in it. Everywhere else we retain M2

W
− iε. The explicit formulae for

Jsubsub functions will be presented elsewhere [16].
We also meet the on-shell singular C0 and B0 functions. They correspond to non-Abelian

Wff ′ vertex functions with a virtual photon coupled to one of the fermions of mass m
and to a W boson and to the W -boson self-energy diagram, respectively. We give explicit
expressions for both functions:

C0(0,−m2,−s; MW , m, 0) =

=
1

m2 − s

[
ln

( s

m2

)
ln

(
−s − M2

W + iMW ΓW

m2 − M2
W

)
− 1

2
ln2

( s

m2

)
−

− Li2

(
m2(−s + M2

W − iε)
s(M2

W − m2)

)
− Li2

(
s

m2 − iε

)
+ Li2

(
−s + M2

W − iε

M2
W − m2

)
+ Li2(1)

]
,

(12)

where the ˇrst ®0¯ stands for a fermion whose mass may be ignored (neutrino or b quark);
and

BF
0 (−s, μ2; MW , 0) = 2 − ln

(
M2

W

μ2

)
−

(
1 − M2

W

s

)
ln

(
−s − M2

W + iMW ΓW

M2
W

)
. (13)

2. CASCADE APPROXIMATIONS

2.1. The Usual Narrow Width Cascade. In this approach we create a narrow width
cascade using one-loop t → Wb and W → lν formulae, i.e.,

Γt→blν =
Γ1loop

t→WbΓ
1loop
W→lν

ΓW

. (14)

At one loop, it is more consistent to use instead its ®linearized¯ version

Γt→blν =
ΓBorn

t→WbΓ
Born
W→lν

ΓW

(
1 + δ1loop

t→Wb + δ1loop
W→lν

)
, (15)

where δ1loop = Γ1loop/ΓBorn − 1.

2.2. Cascade with Complex W Mass. Another approach to the one-loop cascade approxi-
mation uses the same Eq. (14) but with a complex W mass,

M̃2
W

= M2
W
− iMW ΓW , (16)

in all W -boson propagators in the diagrams with radiation of real or virtual photons. This
trick regularizes the corresponding infrared divergences. The modiˇed PV functions are listed
below in this section and the results of new calculations are discussed in Sec. 3.
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This modiˇcation affects all infrared divergent loop and bremsstrahlung diagrams where
a photon is coupled to the W boson: they all become infrared ˇnite.

The modiˇcation of the calculation is trivial for squares and interferences of the corre-
sponding bremsstrahlung diagrams, which after the replacement M2

W → M̃2
W may be treated

like infrared stable hard photon contributions. For loop diagrams one should replace infrared
divergent PV functions in expressions regularized by ΓW . They are listed below.

2.2.1. Analytic Expression for Modiˇed PV Functions. The infrared divergent derivative
B′

0(−M2
W

; 0, M̃W ) = [dB0(p2; 0, M̃W )/dp2]|p2=−M2
W

of the B0 function, which arises from
a counterterm related to the W -boson self-energy diagram, becomes

B′
0(−M2

W
; 0, M̃W ) =

1
M2

W

[
1 + ln

(
M̃2

W − M2
W

M2
W

)]
. (17)

There is only one generic C0 3-point function with a photon coupled to the W boson and a
fermion with mass m2; m1 is the mass of the other fermion:

C0(−m2
1,−m2

2,−M2
W

; M̃W , m2, 0) =
1
Sl

{[
− ln

(
M̃2

W − M2
W

m2
2

)
l (yl1) +

1
2
l2 (yl1)+

+ln
(

1 − yl1

yl2

)
l (yl1)−Li2

(
1 − yl1

yl2 − yl1

)
+Li2

(
−yl1

yl2 − yl1

)
−Li2

(
1

yl1

)]
−

[
yl1 ↔ yl2

]}
.

(18)

Here

l(y) = ln
(

1 − 1
y

)
(19)

and

yl1 =
m2

1 + m2
2 − M2

W + iε + Sl

2m2
1

, yl2 =
m2

1 + m2
2 − M2

W + iε− Sl

2m2
1

,
(20)

Sl =
√

(m2
1 + m2

2 − M2
W + iε)2 − 4m2

1m
2
2.

Its limit, where the radiating mass m2 is arbitrary and the other fermion mass is zero, is much
more compact:

C0(0,−m2
2, Q

2; M̃W , m2, 0) =
1

M2
W − m2

2

[
− ln

(
M̃2

W
− M2

W

m2
2

)
l (yl)+

1
2
l2 (yl)−Li2

(
1
yl

)]
,

(21)
where

yl =
m2

2

m2
2 − M2

W
+ iε

. (22)
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Fig. 5. t → bf1f1 decay

Finally, in the limit m2 → 0, Eq. (18) simpliˇes to

C0(−m2
1,−m2

2,−M2
W

; M̃W , m2, 0) =
1

m2
1 − M2

W

[
− ln

(
m2

2

m2
1

)
ln

(
M̃2

W
− M2

W

m2
1 − M2

W

)
+

+ ln

(
M̃2

W
− M2

W

m2
1

)[
2 ln (−yl) − ln (1 − yl)

]
+

+
1
2

ln2 (1 − yl) − 2 ln2 (−yl) − Li2 (yl) − 2Li2(1)
]
, (23)

where

yl =
m2

1 − M2
W + iε

m2
1

. (24)

In Eq. (23) the mass singular term is separated out explicitly. This expression is especially
convenient if one wants to control mass singularities.

2.3. Pole Approximation. Here we present the cascade pole approximation with the aid of
the two one-loop building blocks as illustrated in Fig. 5. This gives a schematic representation
of a convolution of a BreitÄWigner distribution for a virtual W boson with two pairs of
building blocks: one at one-loop level (big blob) and the second one at tree level, and vice
versa.

First, deˇne the one-loop corrected decay width for two decays off the W mass shell at
some M̂2

W
:

Γ1loop
t→Wb(M̂

2
W

) = ΓBorn
t→Wb(M̂

2
W

)
[
1 + δweak

t→Wb(M
2
W

)
]
+ Γvirtsoft

t→Wb (M̂2
W

) + Γhard
t→Wb(M̂

2
W

) (25)

and a similar representation for the W → lν decay.
Note that δweak is frozen at M2

W
. This trick ensures an approximate gauge invariance for

CC processes (for NC processes it would ensure exact gauge invariance).
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The one-loop Γ1loop
t→blν is given by the following convolution integral:

Γ1loop
t→blν =

1
k

u∫
l

dM̂2
W

[
Γ1loop

t→Wb(M̂
2
W

)ΓBorn
W→lν(M̂2

W
)+

+ Γ1loop
W→lν(M̂2

W )ΓBorn
t→Wb(M̂

2
W ) − ΓBorn

t→Wb(M̂
2
W )ΓBorn

W→lν(M̂2
W )

]
MW

(M̂2
W
− M2

W
)2 + M2

W
Γ2

W

, (26)

where k is given by the normalization of the BreitÄWigner distribution and u and l are the
broadest limits allowed by the decay kinematics:

k = a tan(kmin) + a tan(kmax), u = M2
W + kmaxMW ΓW , l = M2

W − kminMW ΓW ,
(27)

kmin =
M2

W − m2
l

MW ΓW

, kmax =
(mt − mb)2 − M2

W

MW ΓW

,

where ml is the charged lepton mass.
This ˇnite width approximation, as one may call it, allows a fully differential realization,

and hence also MC generation.

3. NUMERICAL RESULTS

We present all numbers, computed with the standard SANC INPUT, PDG(2006) [17]:

GF = 1.16637 · 10−5 GeV−2, α(0) = 1/137.03599911,

MW = 80.403 GeV, ΓW = 2.141 GeV,

MZ = 91.1876 GeV, MH = 120 GeV,

me = 0.51099892 MeV, mu = 62 MeV,

md = 83 MeV, mτ = 1.77699 GeV,

mc = 1.5 GeV, ms = 215 MeV,

mb = 4.7 GeV, mt = 174.2 GeV,

mμ = 0.105658369 GeV, αs = 0.107.

First, we investigate the dependence of the complete one-loop EW results on the b-quark
mass, mb, since the formulas with ˇnite mass are very cumbersome. The calculations are
performed for two decay channels and two schemes: with and without taking account of ΓW

to regularize on-shell W -boson singularities as discussed in Subsubsec. 1.2.2. Table 3 shows
QCD NLO results, where the account of ΓW is irrelevant since the gluons are not coupled to
the W boson.

As seen from Tables 1Ä3, EW and QCD corrections have the opposite sign and QCD
corrections are relatively larger. The mb dependence is barely visible in Γ1loop and consistent
with no-dependence in δ within the statistical errors. This allows us to simplify the analysis
and to present all the subsequent results at a small mb using simpliˇed formulae for weak
one-loop contributions for mb = 0. The QED/QCD contributions contain ln(mb) in different
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Table 1. One-loop decay widths Γ1loop and percentage of the EWRC for complete calculations in
α(0)-scheme as a function of the mb mass and with ΓW kept only in on-shell W -boson singular
terms

mb, t → bl+ν̄l t → bud̄

GeV Γ1loop, MeV δ, % Γ1loop, MeV δ, %

4.7 159.874(1) 6.951(1) 480.338(3) 7.111(1)

1.0 159.873(1) 6.951(1) 480.339(3) 7.111(1)

0.1 159.873(1) 6.950(1) 480.339(3) 7.111(1)

Table 2. One-loop decay widths Γ1loop and percentage of the EWRC for complete calculations
in α(0)-scheme as a function of the mb mass and without regularization of on-shell W -boson
singularities

mb, t → bl+ν̄l t → bud̄

GeV Γ1loop, MeV δ, % Γ1loop, MeV δ, %

4.7 159.943(3) 6.997(2) 480.661(6) 7.183(1)

1.0 159.938(3) 6.993(2) 480.658(6) 7.182(1)

0.1 159.937(3) 6.993(2) 480.656(6) 7.182(1)

Table 3. One-loop decay widths Γ1loop and percentage of the QCD correction for complete calcula-
tions in α(0)-scheme as a function of the mb mass

mb, t → bl+ν̄l t → bud̄

GeV Γ1loop, MeV δ,% Γ1loop, MeV δ, %

4.7 136.71(1) Ä8.54(1) 358.50(17) Ä20.06(4)

1.0 136.70(1) Ä8.55(1) 358.52(19) Ä20.05(4)

0.1 136.71(6) Ä8.55(1) 358.49(22) Ä20.06(5)

parts but they cancel in the sum in accordance with the KLN theorem. Tables 1Ä3 demonstrate
the validity of the KLN theorem.

For deˇniteness, the numbers presented in the following Tables, after Table 3, are com-
puted for mb = 1 GeV, since even at mb = 4.7 GeV the numbers are practically the same as
at mb = 0.1 GeV.

All numbers presented in Tables 1 and 3 may be reproduced by SANC package
sanc cc v1.30.

In Table 4 we illustrate the ΓW dependence of EWRC to the two channels under conside-
ration, irrelevant for QCD NLO corrections.

This Table illustrates the perfect convergence with lowering ΓW and consistency of num-
bers for ΓW /102 with results computed with zero width in arguments of functions with
on-shell-W -mass singularities, see Subsubsec. 1.2.2.
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Table 4. One-loop decay widths and percentage of the EWRC for complete calculations in α(0)-
scheme as a function of ΓW

ΓW /N t → bl+ν̄l t → bud̄

N Γ1loop, MeV δ, % Γ1loop, MeV δ, %

1 159.874(1) 6.951(1) 480.338(3) 7.111(1)

10 159.943(3) 6.997(2) 480.638(6) 7.177(1)

102 159.938(3) 6.994(2) 480.656(6) 7.182(1)

103 159.938(3) 6.993(2) 480.658(6) 7.182(1)

∞ 159.938(3) 6.993(2) 480.658(6) 7.182(1)

Table 5. Born, one-loop decay widths and percentage of the correction in narrow width cascade
approximation, α(0)-scheme

t → Wb W → eν
t → beν
cascade

ΓBorn, MeV 1480.0 219.70 151.87

Γ1loop, MeV 1546.6 225.28 162.73

δ, % 4.495 2.538 7.155

δlin, % 7.033

Table 6. One-loop decay widths and percentage of the correction in cascade approximation with
complex W mass

ΓW /N t → Wb W → eν t → blν cascade

N Γt→Wb, MeV δ,% ΓW→eν , MeV δ,%, Γt→blν , MeV δ, %

1 1543.4 4.29 225.05 2.43 162.23 6.83

10 1543.0 4.26 224.79 2.32 162.00 6.68

102 1543.0 4.26 224.77 2.31 161.99 6.67

103 1543.0 4.26 224.77 2.31 161.99 6.67

Now turn to the study of narrow width cascade approaches, see Sec. 2. All numbers are
presented in the α(0)-scheme for deˇniteness. Here we limit ourselves to EWRC, because of
the vanishing of gW boxes in the QCD case. Comparison of complete and cascade approaches
shows in particular the importance of EW boxes which are absent in the cascade approach.
Two δs are shown corresponding to Eq. (14), factorized version, and Eq. (15), linearized
version.

Table 5 shows rather good agreement of complete and narrow width cascade calculations
for inclusive quantities. The linearized version agrees better. This is natural, since the
complete calculations in SANC are linearized by default.
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Table 7. Born, one-loop decay widths and percentage of the EWRC for the pole approximation,
α(0)-scheme, as a function of ΓW

ΓW /N t → bl+ν̄l

N ΓBorn, MeV Γ1loop, MeV δ, %

1 153.244(1) 164.015(1) 7.029(1)

10 152.007(1) 162.696(1) 7.032(1)

102 151.880(1) 162.561(1) 7.032(1)

103 151.868(1) 162.548(1) 7.032(1)

Next, Table 6 shows the results of the cascade approach with complex W mass, see
Subsec. 2.2.

There is again good convergence with decreasing ΓW , however, we see that the agreement
of this cascade version with the complete one-loop calculation (see Table 1) degrades with
decreasing W -boson width.

Finally, in Table 7 we present the results of calculations within the ˇnite width cascade
approach in the pole approximation for the t → bl+ν̄l decay.

This is the main result of the study of the validity of resonance approaches and it deserves
a detailed discussion. By now we only note that there is convergence with decreasing ΓW

and full consistency with the narrow width cascade results. Since this approach is aimed at
extending the cascade approximation to the description of exclusive quantities, it is worth
testing it for a simple distribution, like dΓ/ds, where s is the invariant mass squared of the
l+ν̄l pair.

CONCLUSIONS

We have described the work for the t → bf1f
′
1 decays. We have computed both QCD

and EW total one-loop corrections within the SANC system for all decays.
We have discussed EW corrections in more detail as they are more complicated than QCD.

We have considered the problem of separating of the QED contribution from the complete
EW correction.

Auxiliary functions J
d(c)
AW (WA) for these decays were introduced. Then, we have presented

numerical results, obtained with the aid of a Monte Carlo integrator.
We study the mb dependence of EW and QCD corrections showing the validity of the

KLN theorem. We have also demonstrated the effect of taking account of the W width in
the EW contribution.

A comprehensive research of using different cascade approximations in numerical evalu-
ations was done. The goal of this research was to check the possibility of using building blocks
calculated in SANC to construct the MC tools for complicated actual processes. We have
studied the narrow width cascade, cascade with complex W -mass approximations and cascade
in the pole approximation. The difference between cascade methods and complete calculations
shows the effect of EW boxes that are missed in the cascade approaches. However, it is
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relatively small and one can see rather good agreement of cascade approaches with complete
calculations. So, all these methods could be applied.

The most important here is the consideration of the case of pole approximation, as it
represents the differential realization of decay widths. This allows the event generation within
a cascade approach. However, the comparison with the complete calculations at the level of
differential event distributions would be also required. That is the goal of a future work.
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