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EULER-HEISENBERG-SCHWINGER LAGRANGIAN
FOR NON-ADIABATICALLY VARYING FIELDS

A. V. Zayakin'

M. V. Lomonosov Moscow State University, Moscow
Institute for Theoretical and Experimental Physics, Moscow

Non-perturbative particle production in external variable fields is important in astrophysics. Although
a wide range of techniques exists for calculating production rate, none of them can handle exactly the
case of a strongly inhomogeneous field. Here an electric field with an abrupt switch-on is considered.
First, a standard semiclassical technique is used. Then, a scattering problem approach to this case is
developed, and time-dependent corrections to the effective Euler—Heisenberg—Schwinger Lagrangian are
calculated.

HenepTyp6 THBHOE poXmeHHe U CTHIl BO BHELIHUX MOJISX MPEJCT BISET HHTEpeC WId CTPOU3HKH.
HecMOTps H  CyIIECTBOB HME Psiil METOHOB P CYET BEPOSTHOCTH POXAEHUS HU OIMH M3 HUX HE OIHChHI-
B €T B TOYHOCTH CIIyd i CHJIBHO HEOJHOPOIHOTO Mois. B 1 HHO# p 60Te p cCM TpUB €TCSI MTHOBEHHO
BKJIIOY [ollieecsl alieKTpuyeckoe mosie. I ero omuc HHUs CH 4 J1  MCIIOJIb3YeTCd CT HJ PTHBIH KB 3H-
KJI CCHYeCKMH MeTOfl. 3 TeM p 3BUB €TCs ITOAXOMX B P MK X TEOPHH P CCEJHHUS, UTO IMO3BOJIET H WTH
3 BUCSLIME OT BPEMEHHU IOIp BKH K 3ppekTuBHOMY 11 rp HXHU HYy [eitzenbepr —IIBunrep —Diinep .

PACS: 11.10.Ef

INTRODUCTION: NON-LINEAR QED IN ASTROPHYSICS

Astrophysical applications require extension of non-perturbative QED particle production
rate calculation techniques beyond local field approximation to the case of strong inhomoge-
neous electromagnetic fields, which cannot be treated adiabatically. Strong fast time-varying
(magnetic) fields are observed in stellar collapse processes and magnetic stars. Intensive space-
inhomogeneous electromagnetic fields are a feature of Kerr—Newman or Reissner—Nordstrom
black holes.

Ruffini and Damour [1] have argued that Euler—Heisenberg—Schwinger processes in Kerr—
Newman gravitational background may account for gamma-ray bursts. According to [2], up to
50% of the energy of an extremal charged black hole may be contained in its electromagnetic
field. On the other hand, field of the charged black hole will quickly dissipate and form via
Euler—Heisenberg—Schwinger process a plasma of eTe~ pairs. The pairs, in their turn, by
escaping the horizon vicinity and interacting with exterior baryonic matter will produce the
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burst of v-radiation. Therefore, to study this possible mechanism of y-production, one should
know the Euler—Heisenberg Lagrangian for inhomogeneous fields.

Extensive literature is devoted to Euler—Heisenberg Lagrangians in variable fields (for
a review see [3]). At present day, exact results are available for constant field, sinusoidal

1
cosh (Qa)? (be z either temporal or

spatial coordinate), and for fields, arbitrary depending on one of the light-cone coordinates
xt = 204 2!, Accurate quasiclassical results are available for fields, depending smoothly on
one of their coordinates [4,5].

A time-inhomogeneous external electric field will be considered, «switched on» in a
theta-function manner

standing wave E ~ sin (Qz) and singular pulse E ~

B3 = Ef(z3) or E3 = Ef(2°), (1)

FE5 being the Ox3 directed component of the field, all other components being zero. One
would like to obtain an expression for particle production rate, or, equivalently, the Euler—
Heisenberg Lagrangian in this case. The field is obviously non-adiabatic, so the standard
«local» formula from [6] is inapplicable here. It is clear that one would hardly find a field
configuration of such a shape in nature, however, it could be a kind of «toy model» to study
the inhomogeneity effects in more complicated cases.

The article is organized as follows. Section 1 reminds the reader some general ideas of
world-line instanton method and obtains the particle production rate quasiclassically up to
1-loop accuracy. The limited applicability of the semiclassical approach to our case is shown.
In Sec.?2 the particle production rate is recalculated by scattering approach and its temporal
dependence is investigated. In Sec.3 a brief comparison of the methods is performed.

1. QUASICLASSICAL APPROACH

1.1. Instantonic Method. One can model the physical finite-time switch-on as follows:

E Qa0
By=— (14—,
P72 ( 1+(Qx%2>

where Q! is the characteristic switch-on duration. If Q= ! > tCompt, OnE can use the
adiabatic approach, but one is interested in the reverse case. Finite switch-on time is intro-
duced not just for physical reasonability, but also for the possibility to smoothly analytically
continue it.

The instantonic method by Dunne, Schubert et al. [7, 8] is being applied to our problem.
The essence of the method is that the effective action of an electromagnetic field, given as
1-particle Feynman path integral

“+o00
dT ot
Set[A™] = — / Te_mZT/dx(O) / Da(r) e~ Srla(r):A™]
0 z(0)=x(T)=z(0)

can be expressed via a sum of exponents of classical actions of all closed-loop Euclidean
space-time (electron) paths in the external field. Here T is the world-line parameter. The
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. . . . ™

integral over T' becomes a sum of a discrete series of saddle points 7T,,, e.g., T, = ol
e

case of constant field, where arbitrary natural number n has the meaning of winding number.

Integration over dz(°) means that one has to integrate over the initial point of the loop in
Euclidean space-time. St[xz(t), A°**] is quadratic action of a relativistic particle in the external
electromagnetic field A®**. The term «world-line instanton» is used for the closed classical
paths satisfying the periodic boundary conditions in Euclidean space-time. Following this
analog, the sum over n in this case directly corresponds to the sum of kink—antikink pairs in
¢* theory.

For details of the method see the two cited articles by Dunne, Schubert et al. For derivation
of relativistic particle path integral with quadratic action see [9]. In fact, this method can be
thought of as a generalization of the WKB method for multiloop trajectories.

1.2. Leading Exponent. Effective QED Lagrangian is generally expressed as a «sum over
instantonic paths»

mLeg = fue . &)

Here S,, is an n-instantonic classical action; f,, is the corresponding preexponential factor.

For example, in constant field case an n-instantonic trajectory yields integral of motion
2

2 2
a = 7772 “, action S, = m};m’ law of motion z4(7) = %sin(%nT), preexponential
2E? (—1)"t! ¢
factor f,, = 60 2 (in scalar QED). Trajectories are simply circles in (3, x4) plane,
T n

wound around n times by the particle.

In the discussed «f-switch-on» case, the situation is more complicated. Generally, in
variable fields simultaneous motion in the Euclidean and Minkowskian regions takes place.
The contour of this motion should be chosen so that world-line parameter 7 is real. Therefore,
special care should be taken to make sure that the formula (2) is applicable.

In our case, the Euclidean-time vector-potential looks like

Ay = % (mu +/1- (Qx4)2) .

The law of motion z4(7), where 7 is world-line parameter, is given by the following integral:

.’L‘4

1 dz't
’ To_a 2 172 2( 142 2
dy |, E (x N >>

4m? ! Q

The z3(7) can be expressed in terms of z*(7) via equations of motion. Here a is e.o.m.
integral, (#%)? + (i*)? = a2, which should be expressed via winding number n according to

the condition
4
z max

11 dz'*
2n  a 2’
e 2B (/T (@)
1- T2 T — ’L—Q
where z2 ., x%. — limits of the classically forbidden region.



398 Zayakin A. V.

In this particular case, due to the convenient choice of the approximating smooth function,
in fact, a wholly Euclidean finite trajectory can be found with periodical boundary conditions
imposed thereupon in the range

1
1< Qxy < —. 3)
Y

Thus, we have the proper integration limits xf, ., x*. and can apply (2) straightforwardly
provided v > 1. For v < 1 it is impossible to apply this technique. The trajectories can be
seen in Fig. 1.
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Fig. 1. «Instantonic» paths in the Euclidean plane (z3,z4). The faster the field is turned on, the smaller
the loop is

Action on a path with winding number n is given by the formula

.’L‘4

max 2
22 1 — O02(2/%)2
S, = 2nm / dx' l—e— x’4—i#
4m Q

Explicitly,
2
nm
S = —
-5 90,
where information on y-dependence is contained in
1 31 1
= 1 —_— _— — — _——
90) WK +272> ™ 472}

Q
Here v = m_E has the meaning of Keldysh parameter for this problem. This result contains

e
no temporal dynamics (i.e., no dependence on time passed after field switch-on), which is
an intrinsic property of the method [7]. In Fig.2 one can see the dependence of S on 7.



Euler—Heisenberg—Schwinger Lagrangian for Non-Adiabatically Varying Fields 399

s 1/cosh? (Q1)

Fig. 2. Action versus Keldysh parameter. For com-
parison, we show ~-dependence of the 1-instantonic

action for a singular pulse field £ ~ ———, a si-
cosh® Qt

nusoidal field F ~ sin (2t) and the case studied in

0
the present paper F ~ <1 + L)

T+ (Qa0)?

Note, the plot starts with v = 1, because g(-y) is undefined below it in our case. Thus, it is
impossible to compare the result with constant field case at v — 0.

It may seem strange that asymptotically for very large Keldysh parameter ~ the situation
is identical to constant field case, whereas smooth field switch-on is felt in a wider range.
However, one should remember that less smooth the field is, less applicable quasiclassical
method becomes in general. Therefore, this unnatural behaviour of g(y) should be thought
of as a manifestation of inapplicability of semiclassical methods to this case. In the next
subsection the preexponential factor is calculated within the same approximation, however, it
is clear that one should use time-dependent formalism of Sec. 2 if it is necessary to deal with
singular fields.

1.3. 1-Loop Corrections. The instantonic method allows us to express the 1-loop de-
terminant by a simple integral transformation of the field. From formula (3.24) in [8] one
can make sure that for scalar QED, whatever the
dependence of A on x4 is, the preexponential Log (Prefactor)
for n-instantonic solution is simply and universally 3.5 leosh? Q1) _ —-
expressed in terms of the preexponential for the -
1-instantonic solution

n+1
ooy ®

From formulae (3.44), (3.45) in [8] with integration
limits modified according to (3) one obtains for the
preexponential -

Fiy) = —2v2,/72 — 143 . 5) 4 6 8 10
v2 =1 —~2 Arcsec () 14

cos (Q21) /,f”
1 -

-

I S S T T T T S T T |

The plot of this function versus Keldysh parameter is Fig. 3.  Exponential prefactor versus
depicted in Fig. 3. One can see again that this quantity Keldysh parameter
tends to the constant field limit at v — oo.

The final result is thus for scalar QED

X 1\n+1 m2
Im Lo = f1(7) D D e (—ne—g(v)>

2
n
n=1
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with g(v) = and f; given in (5). It is easily generalized for fermionic theories. As for
the action, so for the prefactor here, no xy dependence has been obtained due to the special
feature of the semiclassical method as it yields the particle production rate already integrated
over xg. The result of this section is that for fields switched on fast enough constant field
approximation will work in the long run (i.e., at 9 — o00) better than for a slowly varying
field. The latter, however, can be treated within an adiabatic approximation and is out of our
interest.

2. SCATTERING APPROACH

The instantonic method has a clear physical interpretation and is easy to implement,
however, it has some disadvantages. As already mentioned, the xy dependence of the final
result is absorbed into T'-integration. In fact, the quantity obtained in the previous section
disregards all transition processes. What is calculated may be thought of as an average particle
creation rate at sufficiently large times. Then it is obvious that the asymptotics should agree
with constant field case. Below a different treatment of the same problem is presented. It will
allow us to observe transition phenomena in this system. By the way, no regularization of the
field in scattering approach will be necessary, i.e., one can work directly with #-function-like
field, imposing matching conditions on the boundary.

One may start with the familiar derivation, found in textbooks [10, 11]

—iASeq = Indet (iv"0, — ey" A, — m) — Indet (iv*0, — m) =

1
=5 {lndet ((28 —eA)? + ga’“’Fw - m2) — Indet ((i9)* — m2)} :
Then, s-representation for the determinant is introduced; tr is taken over Dirac indices
1 d .
— 1ASeg = = /d4x/ —Se_lmZSx
2 s
X tr ((m\ exp (zs ((P —eA)? + gUWF;w)) |x) — (m\e“s2 \x)) ;

after inserting unity decomposition and taking Dirac matrix trace, one gets

. 1 4 ds —imzsd4pd4p/ i(p—p')x
—ZASEH‘:§/de ?e We(pp)x
X (49(%) cosh eEos<m\ei‘9(p_EA)2 |x) — 4<x\eisp2 \x)) ,

where P; are momenta operators. Hence, after taking integrals in momentum space

1 ds o2
_ 4 —im*s
B /d en2i | 2 ¢ X

1 : !
X |:9($0) cosheEps — /dpsdpodpo’ ei(Po—po)zo <p0
™

eis(f’o?—(pg—eEom()O(mo))z) ‘p0/> _ §:| ]
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Thus, effective Lagrangian correction at xg > 0 is given by

1 1
{eEo cosheFys I(zg,s) — — — §e2Egs} .
s

1 dse—im’s
82 52

A»Ceﬁ” =

We remind here the standard Euler—Heisenberg Lagrangian

1 dse—im?s
872 52

1 1
AL = {eEo ctanheFys — — — 562E38:|
s
(the last term is subtracted in both expressions due to renormalization prescription). Our main
goal is to calculate the term

1 .
I(xg,s) = o /dpgdpode’ exp (z(po - py) (xo — %)) X

.5 b3 b3
X <p0| exp (zs <P02 —e?E2230 (:Eo + E) — p30 <—$0 - E))) P0/>

and to compare it with the original —
sinh eFys

by solving 1-dimensional reflection problem of quantum mechanics, assuming the operator
in the exponent to be the «effective Hamiltonian». We note here that pair production was
first described in a similar manner in terms of 1-dimensional oscillator in [12]. The time
dependence would have vanished, if the potential of this Hamiltonian had simply been E?x3,
as it is in the standard case. The matrix element would be diagonal then, which would
eliminate time-dependence at all. However, a piecewise-given potential is treated here, thus
o dependence persists.

This expression is being analytically continued by susbtituting Ey — iEy, ps — ips and
one considers

I (20, 8) = L /dpgdpode’ exp (i(po - py) (3:0 - p_3>) X
7T6E0 eEo
X <p0 exp (is <P02 + e?E2x30 (wo + %) + p30 (—xo - %))) p0’> .

Thus, a positive-definite Hamiltonian has been obtained, which makes reflection problem
well-posed. «Reverse» analytical continuation will necessary to be performed at the end of

the calculation to return to the original physical domain.

for constant field. This calculation is performed

Let us introduce dimensionless variables £ = xv/eFEy, p; = , 6= —,5=-¢ckEpys

and write down 4% (z, s) in terms of them

1 - ~/ =~ ~
I%%(30,5) = — / dpdpodp) ¢(Po—P0)(@o—Pa) 5

X <I50

Further tilde sign is going to be omitted.

exp (ig(Pg +&30(Z0 — P3) + P50(—T0 — ﬁg)))

.
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Thus, the problem has now been reduced to studying 1-dimensional Schrédinger equa-
- 1 - 1
tion with Hamiltonian H = 5P02 + V(=p), its potential being V' (zo) = 3 (230(z0 + p3)+
Pge(—% - pg))- R X
Now the matrix element of operator e~25H = ois(Fg+a50(zo+pa)+p30(~wo—p3)) will be
calculated. Unity expansion in terms of its eigenfunctions is used [y (z)), defined by equation
H|1e) = €|t)). The spectrum has bound states with energies 0 < €, < p3/2, and free states

with energies € > p%/2. For free states one has to solve reflection problem, so that one can
find the density of states expressed in terms of phase shift [9, p. 1120]

on 100

de I
and § is expressed in terms of logarithmic derivatives

Oln.
L(ps, €) = %@)
T=—p3

of wavefunctions in the matching point:

L
5 =tan~! 7 — p3.

Therefore, the analytically-continued function 74" becomes

1 ) /
%2, 5) = ~ / dpsdpodp,’ ¢! P00 =ps)

8 3 .
| [ detmlvdtdm) G+ S0 b alpren |

0<5n<p§/2

which, after inserting explicit integral representation of matrix elements (pg|t|p,’), simpli-
fies to

“+o0
2 [ | Y W lao—paP s [ delutoo o) G

0<en<p3/2 p3/2

This expression can be split into three parts,
IAn(xo, s) = If‘n(xo, s)+ Ifn(xo, s) + I?n(xo, s), (6)
the first one being the contribution of bound states, the two other ones coming from free

spectrum. The contribution of free states has been separated into two parts because of the
special feature of the potential: for p; > 0 free spectrum has p2 /2 as the lowest energy level,

—+oo —+o0

4 de
Iﬁ“(xo,s):; / dps / 7
0 3

2 2
9 —L (pg,e—&—‘%) + 2ell (pg,e—i-&) 2

. D3 2 ] 2
X exp (225 (6 + ?>> (] 73 (zo —p3)|

e+

2\ 2
L<p3,€+%) + 2¢
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whereas for p3 < 0 free spectrum starts already with zero

—L(ps3, €) + 2e L (ps3, €)
I — 2195 . 2 ) € A
(2, 8 / dps / T el — o) e

Later, we are going to make sure that the contributions of I and I3 are negligible. The
leading contribution, i.e., sum over bound states in the I; is

+oo
I (o, 8) = 2 / dps Z e, (0 — p3)|? €25n,
0 0<en<p3/2

which can be regrouped as

T2 (20, 5) = 2 Z exp (225 (n + )) / dps|ibe, (zo — p3)|*.
V2n+1
Here one makes use of the fact that bound states eigenfunctions and eigenvalues of this prob-
lem are very close to those of harmonic oscillator. The difference is essential only between
asymptotics of wavefunctions'. But this region does not give any important contributions to
IA%(z9, s). Thus, further simplification arises, as the complicated wavefunctions v (xq) can
be traded for simple Hermitian polynomials

H,(p3 — —(ps—=0)®
=35 a1+ 1)) [ Bt
V2n+1

which becomes

+o00 2
1 H,(p3)?e Ps
An — 1 _
I (zo, 8) = 23:0 exp (228 (n + 2)) / \/_an'

— I
+oo _p2
1 . 1\ Hu(ps)?e P
S —2 2 S ) s T
isins ; P ( " (" - 2)) /w2l

One can interprete this formula intuitively in the following way: in constant field all energy
levels contribute to the trace of the operator, whereas, if the field is turned on in a moment, the
levels are also «switched on» consequently, dependent on the value of transversal momentum
of the wavefunction. This is, to our understanding, the difference between constant field and
switched-on field case. By doing the reverse analytic continuation one obtains

+oo o0 _p2
1 1 H,(p3)%ePs
L = -2 -2 = dps———=——. 7
' Sinhs nz:;) <P ( s (n + 2)) / Pa V/m2nn)! @)
o

—v2n+1

2 . . . . .
10z e™® / 2), & — =oo-type behaviour for harmonic oscillator, whereas for exact solution of our potential
. 2
asymptotics of type O(z® e~ %), x — —oo and O(z“e™*"), x — 4o00.
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. . . 1 L .
The last equation makes it possiblle to separate the term, which is already present in
si

the constant field case, and the second term, which repregents the non-trivial contribution of
abrupt field switch-on to Euler—Heisenberg Lagrangian. Here we stress that this sum is an
exact expression, which is not a perturbation series in E or in z(, but incorporates all possible
non-linear effects in 1-loop vacuum QED. It is obvious that the sum in (7) tends to zero, as
Ty — 00, i.e., effects of field switch-on gradually die out and one is left with the standard
expression.

2.1. Numerical Results. Evaluating (7) is easy, as it contains just 1-dimensional numerical
integration. One easily obtains the following asymptotic behaviour, dependent on s

n(zo)
AIl(.’Eo,S) = S ’
e2(@0)s=f2(w0) 1 < 5 < o0

03<s<1,

The functions «;(xo), 0i(z0),n(zo) have the following simple approximation, obtained nu-
merically in the region 0 < zg < 4:

n(zo) = 0.06 — 0.01x,
012(1'0) = 0.44.%() + 0.4,
ﬁg = 040$0 — 1.57.

Thus, it follows that the typical dimensionless time xg, during which nonstationary effects
are seen, is of the order of magnitude xyg ~ 1. Restoring dimensionful time, the typical
«nonstationarity time»

TNS — eEO

is obtained.

3. DISCUSSION

Our main result is a simple formula for a time-dependent non-perturbative correction
to Euler-Heisenberg Lagrangian, which is valid in case of #-function external field time-
dependence

2
0Ler = —20(x0) / g exp (—i%s) X

0
+oo o0 2 _p2
1 Hy(ps)*e™Ps
B zo—V2n+1

Free spectrum contributions have been neglected here for simple reasons. It is stressed once
more that (8) has a very simple physical interpretation: abrupt switch-on of the field excites
the oscillators of the Schrodinger operator in a non-uniform way. This makes the effective
Lagrangian time-dependent. In fact, what has been calculated here can be thought of (in a
somewhat loose language) as «vacuum polarizability rate». Here one should agree that, in
fact, the most self-consistent treatment of such a system would have been performed in the
framework of non-equilibrium thermal QED. So, the result produced here should be thought
of reference point for the true thermal QFT [9] treatment.
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Another important result of this paper is giving the 1-loop semiclassical result for particle
production rate in case of smooth step-like field switch-on. Its limited validity in case of
very inhomogeneous field has already been discussed above. It can be believed that both
the semiclassical result and the time-dependent Indet computation will help to understand
the complicated astrophysical processes, especially those taking place around charged black
holes. In particular, it can be possible that the two different physical processes — particle
production from vacuum by a strong EM field and Hawking radiation — can be treated within
the same formalism and we are going to extend our studies towards this more complicated
case of two competing processes.
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