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The effective coefˇcients of a conductivity ˇeld for estimating an average value of the current
density and its variance for the problem of resistivity logging in a multiscale isotropic porous medium
are considered. A conductivity ˇeld has pulsations from an extremely wide range of scales and log-
normal statistics. For the modelling of the conductivity we use Kolmogorov's multiplicative cascades.
The problem is solved by the method of subgrid modelling. The results are veriˇed by the 3D numerical
modelling.
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INTRODUCTION

Natural porous media are essentially inhomogeneous. Large-scale (coarse) elements of a
medium structure, such as, easily recognizable layers or intercalations are directly described
by the model. Small-scale details of conductivity, porosity, permeability are unknown. They
should be considered within the statistical approach, introducing effective parameters. To take
into account the intermittency of an inhomogeneous medium one can use the ideas proposed
by Kolmogorov [1]. In this approach, the basic properties of media are hierarchical spatial
structurization and power dependencies.
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1. MAIN EQUATIONS AND A CONDUCTIVITY MODEL

We consider the problem of the direct-current in the isotropic inhomogeneous medium [2]:

∇iσ(x)∇iU (x) = 0, U(x)|S = U0(x),
E(x) = −∇U(x), j(x) = σ(x)E(x),

(1)

where σ(x) is conductivity of the medium; U(x), E(x) are potential and electrical ˇelds; j(x)
is density of the current. We suppose that the conductivity is constant outside the volume V
with a boundary S. Let the ˇeld of conductivity be known. This means that it is measured
in a volume of a small size l0 for each point x. A random function of the spatial coordinates
σ(x) is considered as limit of the conductivity σ(x)l0 . As l0 → 0, we have σ(x)l0 → σ(x).
To pass to a coarser grid l1, one can smooth the resultant ˇeld σ(x)l1 using the scale l1 > l0.
Similar to [1, 3], we consider a dimensionless function ψ (x, l, l1) = σ(x)l/σ(x)1, where
σ(x)l1 is the conductivity σ(x)l0 smoothed over the scale l1. The ˇeld ψ(x, l, l1) has too
many arguments. We deˇne a simpler ˇeld that contains the same information. We expand
ψ(x, l1, l3) and ψ(x, l2, l3) in series at l2. Rejecting the terms of second order and using the
evident equality ψ(x, l1, l3) = ψ(x, l1, l2)ψ(x, l2, l3), we obtain

∂ψ(x, l1, l2)
∂l2

=
1
l2

ψ(x, l1, l2)ϕ (x,l2) , (2)

where ϕ(x, l2) = (∂ψ(x, l2, λl2)/∂λ)|λ=1, λ = l3/l2. From (2) it follows:

∂ ln σ(x, l)
∂ ln l

= ϕ(x, l). (3)

The solution to Eq. (3) has the form

σ(x)l0 = σ0 exp

⎡
⎣−

L∫
l0

ϕ(x, l1)
dl1
l1

⎤
⎦ , (4)

where σ0 is constant. We suppose that the conductivity has heterogeneities of the scale l
from the interval (l0, L), where l0 is minimal and L is maximal scales of measurements
L3 � V , σ(x) = σ(x)l0 . The ˇeld ϕ(x, l) is assumed to be homogeneous and isotropic, then
a correlation function is

〈ϕ(x, l)ϕ(y, l1)〉 − 〈ϕ(x, l)〉 〈ϕ(y, l1)〉 = Φ
(
(x− y)2 , l, l1

)
, (5)

where 〈〉 is probability averaging. If the function ϕ is statistically invariant to the scale

transform, its correlation is satisˇed by Φ

(
(x − y)2

l2
,
l1
l

)
. The discrete approximation of

the ˇelds ϕ(x, l1) will be considered to render probabilistic models. In this approximation, the
ˇelds ϕ(x, l), ϕ(y, l1) with different scales l, l1 at any x,y are considered to be statistically
independent. This is usually assumed in the scaling models and re
ects the decay of statistical
dependence, when the scales of 
uctuations become different magnitude. The latter was



Resistivity Logging in a Multiscale Isotropic Porous Medium 389

proposed in [1]. To describe the probability distribution for the integral from (4) for large
L/l, we use the theorem about sums of independent variables. If the variance of ϕ(x, l) at

a given point exists, then the theorem says that the factor

L∫
l0

ϕ(x, l1)
dl1
l1

for very large L/l0

tends to a normal ˇeld. In the opposite case (the second correlation function does not exist),
the integral over dl/l tends to a ˇeld described by a stable distribution. The case of a stable
distribution is considered in [4]. In our work, it is assumed that at l0 < l < L ϕ(x, l) has
normal distribution.

2. SUBGRID MODEL

The conductivity function σ(x) = σ(x)l0 is divided into two components with respect to
the scale l. The large-scale component σ(x, l) is obtained by statistical averaging over all
ϕ(x, l1) with l0 < l1 < l, l − l0 = dl, where dl is small. A small-scale (subgrid) component
is equal to σ′(x) = σ(x) − σ(x, l):

σ(x, l) = σ0 exp

⎡
⎣−

L∫
l

ϕ(x, l1)
dl1
l1

⎤
⎦

〈
exp

⎡
⎣−

l∫
l0

ϕ(x, l1)
dl1
l1

⎤
⎦
〉

, (6)

σ′(x) = σ(x, l)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

exp

⎡
⎣−

l∫
l0

ϕ(x, l1)
dl1
l1

⎤
⎦

〈
exp

⎡
⎣−

l∫
l0

ϕ(x, l1)
dl1
l1

⎤
⎦〉 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

A large-scale (ongrid) component of the potential U(x, l) is obtained as averaging Eq. (1)
in which a large-scale component of conductivity is ˇxed and a small component σ′(x)
is a random variable U(x, l) = 〈U(x)〉σ(x,l). A subgrid component of the potential is
U ′(x) = U(x)−U(x, l). Substituting the expression for U(x), σ(x) in Eq. (1) and averaging
over the small-scale component, we obtain

∇i

[
σ(x, l)∇iU(x, l) + 〈σ′(x)∇iU

′(x)〉σ(x,l)

]
= 0, (8)

where 〈〉σ(x,l) denotes statistical averaging over l1 < l, when σ(x, l) is ˇxed. The second
term in Eq. (8) is unknown. It cannot be rejected without preliminary estimation, since
the correlation between the conductivity and the potential gradient may be substantial. The
choice of the form of the second term in (8) determines the subgrid model. This expression
is estimated using perturbation theory. Let the scale l be close to the smallest scale l0.
Subtracting (8) from (1) and ignoring terms of the second order of smallness, we obtain the
subgrid equation for the potential U ′(x):

ΔU ′(x) = − 1
σ (x, l)

∇iσ
′(x)∇iU(x, l). (9)
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The variables σ(x, l), U(x, l) in the right-hand side of Eq. (9) are considered known, their
derivatives varying slower than σ′(x), U ′(x) and their derivatives. Therefore,

U ′(x) =
1

4πσ(x, l)

∫
V

1
r
∇′

jσ
′(x′)dx′∇jU(x, l), (10)

where r = |x − x′|. From (6), (10), using the equality

∫
xjxm

r2dϑ
=

4πδjm

3
, where ϑ is a full

solid angle, we obtain

〈σ(x)∇iU(x)〉σ(x)l
�

[
1 +

(
1
6
Φ0 (l) − 〈ϕ〉

)
dl

l

]
σ(x)l∇iU(x, l), (11)

where Φ0(l) = Φ(0, l). Here, the integration over the ˇnite volume V is replaced by the
integration with inˇnite limits, because the correlation function Φ is small outside the domain
of scale L. Such a substitution gives a coarse estimation near to the boundary, but this does
not affect the determined mean values, because L3 � V . In the limit l → l0, we come to the
expression for the effective coefˇcient, which correctly describes a mean value of the current
density:

σeff(x) = σ1
0l exp

⎡
⎣−

L∫
l

ϕ(x, l1)
dl1
l1

⎤
⎦ , (12)

where
d ln σ1

0l

d ln l
= −〈ϕ〉 +

1
6
Φ0(l). (13)

If a function ϕ is statistically invariant to the scale transform, the solution to Eq. (13) has

especially a simple form: σ1
0l = σ0L (l/L)−〈ϕ〉+Φ0/6, where the constant σ0L describes the

density for the largest scale 〈j〉 = −σ0L∇〈U〉. In the same way, we come to the effective
coefˇcients for the correlation tensor of the current density. The effective coefˇcients for
diagonal components of the tensor are

d ln
(
σ2

0l

)2

d ln l
=

(
14
15

Φ0 (l) − 2 〈ϕ〉
)

,
d ln

(
σ3

0l

)2

d ln l
= (Φ0 (l) − 2 〈ϕ〉) . (14)

If a function ϕ is statistically invariant to the scale transform,

w = θ1AvL − θ2IvL, (15)

where wi =
〈
j2
i (x)

〉
− 〈ji(x)〉2, viL = j2

iL(x), θ1 = σ2
0L(l0/L)Φ0−2〈ϕ〉/3, θ2 =

σ2
0L(l0/L)Φ0/3−2〈ϕ〉, A is a matrix, aii = 2(l0/L)Φ0/15 + 1, aij = −(l0/L)Φ0/15 + 1,

I is a unit matrix. For non-diagonal components of the tensor, we have

d ln
(
σ4

0l

)2

d ln l
=

(
4
5
Φ0(l) − 2 〈ϕ〉

)
. (16)

[〈ji(x)jj(x)〉 − 〈ji(x)〉 〈jj(x)〉]eff =

= σ2
0L

[
(l0/L)4/5Φ0−2〈ϕ〉 − (l0/L)−2〈ϕ〉+Φ0/3

]
ji(x, L)jk(x, L).
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3. NUMERICAL MODELLING

For the numerical calculation we use dimensionless variables. The problem is solved for
σ0 = 1 in a unit cube with a unit potential difference along Y axis. The integral in (4) is
replaced by a ˇnite difference formula, in which it is convenient to pass to a logarithm with
base 2, where l = 2τ .

σ(x)l0 = 2

(
−

−3∑
i=−5

ϕ(x,τi)Δτ

)
. (17)

Fig. 1. The self-similar conductivity in the mid-span section z = 1/2 calculated by formula (17)

for 〈ϕ〉 = 0.15

For the numerical modelling, the scale step Δτ is equal to one, τi = −3,−4,−5,
corresponding to l = 1/64, 1/32, 1/16. To calculate ϕ, we use the correlation function

〈ϕ(x, τi)ϕ(y, τj)〉 − 〈ϕ(x, τi)〉 〈ϕ(y, τj)〉 = (Φ0/ ln 2) exp
[
− (x − y)2 /22τi

]
. The constants

Φ0, 〈ϕ〉 should be chosen from experimental data for natural media [5]. We choose Φ0 = 0.3.
In Fig. 1, we have self-similar conductivity in the mid-span section for formula (17). The
structure of the correlation matrix allows us to represent it in the form of a direct product
of four matrices low dimensionality and to apply the algorithm ®along rows and columns¯
for numerical simulation [6]. According to the procedure deriving subgrid formulas, we
have to numerically solve the complete problem and perform the probability averaging over

Fig. 2. The dependence of the logarithm of the mean Y component of the current density on the

considered number of the scales in the model
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small-scale 
uctuations of conductivity to verify the subgrid formulas. As a result, we obtain
a subgrid term, which can be compared to theoretical expression. In the present work, a
more efˇcient veriˇcation has been carried out. We numerically solve dimensionless Eq. (1)
for conductivities using one, two and three summands in the exponent of formula (17). An
iterative method combined with Fourier transform and the sweep method is used. Then, we
determine corresponding mean values replacing the statistical averaging by spatial averaging
and calculate the same mean values using theoretical formulas. We also compare the results
obtained to our theoretical formulas with the results obtained with ®ordinary¯ perturbations
theory. The ergodic hypothesis is veriˇed. Figure 2 gives: lines 1, 2 are 〈log2 jy(x)〉 obtained
by theoretical formulas (12), (13) for 〈ϕ〉 = 0 and 〈ϕ〉 = 0.15, respectively; dashed lines 3, 4
are the result obtained with ®ordinary¯ perturbation theory; stars and crosslets mark the result
of numerical modelling. The mean X, Z components of the current desity are equal to 0. The
result of numerical veriˇcation for the variance of the current density components jy, jx is

plotted in Fig. 3, where Dx = log2

[〈
j2
x(x)

〉
− 〈jx(x)〉2

]
, Dy = log2

[〈
j2
y(x)

〉
− 〈jy(x)〉2

]
.

Dashed lines 1, 2 are the result obtained with ®ordinary¯ perturbation theory; lines 3, 4 are
obtained by theoretical formula (15) for 〈ϕ〉 = 0.15; stars mark the result of numerical mod-
elling. For the longitudinal component variance of the density (jy(x)) the numerical result
is in good agreement with the estimation obtained with theoretical formulas (14), (15). For
the transverse component, the distinction of the two results is in the limits of the calculation
error.

Fig. 3. The dependence of the logarithm variance of the components of the current density jy , jx on
the considered number of scales in the model

CONCLUSIONS

In this work we obtain the formulas including the effect of small-scale 
uctuations in
the calculation of mean characteristics of the current density. The conductivity ˇeld is
approximated by the extremely inhomogeneous ˇeld close to a multifractal. If l → l0 in
formula (4), we obtain the multifractal. However, this approach is within the apparatus of
differential equations and theory of random processes. The main objects of the theory are
ˇelds, whose properties can, in principle, be measured. The considered medium has the
scale-invariance conductivity. We obtain that the mean value of the current density and
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the pairwise differences, the sum of single-point moments have exponential dependencies
on the scale of inhomogeneity. The exponents in the formulas for effective coefˇcients are
determined. The numerical veriˇcation is in good agreement with theoretical formulas as well
as with numerical results.

The work is supported by Russian Foundation for Basic Research, project No. 04-05-
64415, No.06-05-64149, Integration project No. 75, SB RAS.
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