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KOMIIBIOTEPHLIE TEXHOJIOTHU B ®U3UKE

STABILITY THEORY BY LYAPUNOYV’S FIRST METHOD
AND RECURRENT NEURAL NETWORKS

1. Dario

Department of Mathematics, FEI, Technical University of Kosice, Slovak Republic

We give some relationship between Lyapunov’s exponents and the recurrent neural network model
described by the system of delay-differential equations. We investigate the dynamic properties of the
specific class of nonlinear delay-differential equations by studying the asymptotic behavior of their
solutions by means of Lyapunov’s exponents.

[Ipencr BI€HO COOTHOLIEHHWE MEXAY JKCIHOHEHT MU JISMyHOB W MOIENbI0 PEKypPpPEeHTHOM
HEHPOHHOI CeTH, ONHCHIB eMoil cucTeMol nudepeHIH JIbHbIX Yp BHEHUU ¢ 3 I 3abIB HueM. Mccie-
IyIOTCS TUH MHYECKHE CBOIICTB CIlel JBbHOTO KJI CC HeNUHEeHHBIX JuddepeHnn JIbHBIX yp BHEHHUIl C
3 I 3[bIB HHEM IIOCPEACTBOM M3y4E€HHd CHUMIITOTUYECKOIO MOBEJEHUS UX PELICHUi C IIOMOLIbIO 9KCIO-
HEHT JI41yHOB .

PACS: 02.60.Cb; 02.70.-c

INTRODUCTION

The stability of nonlinear dynamical system is a difficult issue to deal with. When we
speak of stability in the context of a nonlinear dynamical system, we usually mean stability
in the sense of Lyapunov. A.M.Lyapunov (see [8]) presented the fundamental concepts
of the stability theory known as the first method of Lyapunov. This method is widely
used for the stability analysis of linear and nonlinear systems, both time-invariant and time-
varying (see [11]). As such it is directly applicable to the stability analysis of neural networks.
The study of neurodynamics may follow one of the two routes (see [5,9, 10]), depending on
the application of interest:

1. Deterministic neurodynamics (see [1,2,7]), in which the neural network model has a
deterministic behavior. In mathematical terms, it is described by a set of nonlinear delay-
differential equations that define the exact evolution of the model as a function of time.

2. Statistical neurodynamics (see [4,6]), in which the neural network model is perturbed
by the presence of noise. In this case, we have to deal with stochastic nonlinear differential
equations, expressing the solution in probabilistic terms. The combination of stochasticity
and nonlinearity makes the subject more difficult to handle.

In this paper we restrict ourselves to deterministic neurodynamics.
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1. LYAPUNOV’S EXPONENTS

In order to proceed with the study of neurodynamics, we need a mathematical model for
describing the dynamics of nonlinear system. A model most naturally suited for this purpose
is the so-called state-space model. According to this model, we think in terms of a set of state
variables whose values are supposed to contain sufficient information to predict the future
evolution of the system. Let

x1(t), z2(t), ..., xn(t) (1)

denote the state variables of a nonlinear dynamical system, where continuous time ¢ is the
independent variable and n is the order of system. The dynamics of a large class of nonlinear
dynamical systems may then be cast in the form of a system of first-order differential equations
written as follows:

Sailt) = 3 pu a0+ D auOus(t) + 3 dis (O () + L0, )
j=1 j=1 j=1

where all functions
pij(t), qij(t), dij(t), Li(t) 3)
are assumed to be continuous functions of time,

pii(t) <0, |pij()] <p<+4oo, gi;(t)| < g <+oo, [dij(t)] < d < oo,

C))
1
uj(t) = 52;(t) (lz(t = 7) + 1 = |z;(t = 7) = 1)), 7>0, t—7<to, (5)
1
yi(t) = 5 (12 (8) + 1 = |2 (t) = 1]),
(6)

1=1,2,...,n, j7=1,2,...,n.

This system of delay-differential equations can be used to model recurrent neural networks.
The initial value problem for (2) is defined as follows (see [5, 7]):
On the initial set

EtD:{t—TIt—T<t0,tG<to,OO)}U{to} (7)
let a continuous initial vector function

@(t) = (@0(t)7@1(t)’¢2(t)7'"7(pn—1(t)) (3

be given.
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We have to find the solution
z(t) = (x1(t), 22(t), ..., 2n(t), z:(t) € C* ((tp, 0)) C))
of (2) satisfying
zj+1(t) = ¢;(t), j=0,1,2,...,n—1, (10)
if
t—71T<t<ty, 1=1,2,...,n (11)

Under the above assumptions, the initial value problem (2), (10) has exactly one solution on
the interval (tg, 00), where

©i(t) = zjp1,005(t), Tip1(to) = zj11,0, (12)

wj(to)zl, j:O,l,...,n—l. (13)
In the following we consider the system of nonlinear delay-differential equations of the form

%in (t) = ;pij (t).i?j (t) + ; qij (t)’LLj (t) + Z dij (t)yj (t), 1=1,2,...,n. (14)

Jj=1

Definition 1.1. A superior Lyapunov exponent (see [3,5]) of a vector function x(t) is
called a real number A which is defined by

- 1
A = limsup (E In ||x(t)|> .
t—o0

Definition 1.2. An inferior Lyapunov exponent of a vector function x(¢) is called a real
number A which is defined by

1
A= litminf (Z In ||33(t)|) ,

where

HxH =V (J?,JJ), (x,y) = Z%E

Definition 1.3. A superior central exponent of Cauchy’s matrix of a linear differential
system is called a real number 2 which is defined by

k
. . 1 .
0= %r;f() (hmsup T ;m I X (T, (i — 1)T)||> =

k—o0

T—o0

k
. . 1 g
= lim <lll?ib£p T ;:1 In || X (3T, (i — 1)T)|> . (15
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Definition 1.4. An inferior central exponent of Cauchy’s matrix of a linear differential
system is called a real number w which is defined by

k
. . 1 —1 /- . —1 .
“"%%Qﬂsipﬁzi_llnHX G, (i~ 1)7)| )—

k
. . 1 1 —1
= Jlim (hgf;l)p T ;:1 In || X1 (T, (i — 1)T)|| ) . (16)

We have to find the norm of Cauchy’s matrix of the linear differential system by using the
following formula:

G
Pl

where we have to search a maximum element of a set of all solutions of a linear differential
system.
Choose any nontrivial solution

w(t) = (wy (), wa(t), ..., wn(t)) (18)

of the set of all solutions of (14). If a,, ;;(t) denotes p;;(t) + gi; (t)v;(¢),

X, 8)ll =

(17)

1=12,...,n, 7=12,...,n
and
1
vi(t) = 5 (lw;(t = 7) + 1| = |w;(t — 7) — 1)), (19)

then w(t) is the solution of the nonlinear differential system
d n n )
Zalt) = ;a i (D)z;(t) + ;dz—j(t)yj (t), i=1.2,...,n, (20)

too. The equality
a5 () = i (t) + i (£)v; (1) 21
implies the fact that all coefficiens a., ;;(t) are continuous functions of time and

i <L aw i ()] < [pij (O] + iz )] - [v; ) S p+q = a,
te€(0,400), 0<a<+oo.

(22)
Theorem 1.1. Let a € R satisfies the inequality (22). Then, every nontrivial solution z(t)

of nonlinear differential system (14) satisfies the inequality

o~ M(t—to) < ”Z(t)” < el\l(t—to)7 t>tyg, M=a+d. (23)
[|2(to)l
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Proof. Due to the fact that all constants a do not depend on the parameter w, there
suffices to prove this theorem for all nontrivial solutions of (20).
In the first part of the proof we show that any nontrivial solution z(¢) of (20) satisfies the

inequality
d
dt

Modification of the left-hand side of (24) gives

2 <eM |z 24

=2|(z"(t), 2 < 21D =Bl =

=2 Z (awir (D21(0) + -+ awin (Oza(t) + dia (By1(8) + -+ din (B)ya (D) 2(1)]| <

[EQIES

>3 a0

j=11:=1

< 2allz(0))* + 2 ly@) | 2] < 2a|l2(8)]* + 2d ||z(1)|* =
=2(a+d) =] =2M |z(1)|*. (25

2B+

>3 i

j=11:=1

) ly@IF ) @] <

The first part of the proof is complete.
In the second part of the proof, multiplying both sides of this inequality by ||z(¢)]| 2, one
may obtain

d
—M < 2 nl2(1)] < M. (26)
Integration of (26) gives
[zl
t—tg) <1 <Mt —tg). 27
( 0) n ||Z(t0)|| ( 0) ( )

Consequently,
—M(t—to) < 2@l < oM(t—to)
I
Notice that the solution w(t) satisfies the inequality (23), too.
The proof is complete.

e
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Remark. Implicit in this theorem is the fact that if z(¢) satisfies the inequality (23), then
Lyapunov’s exponents satisfy the inequality

~M<ASKAEM, - M<w<Q<M. (28)

CONCLUSION

Nonlinear dynamical systems of order greater than 2 have the capability of exhibiting
a chaotic behavior that is highly complex. Lyapunov’s exponents can be used to study a
chaotic behavior of solutions of neurodynamical systems, too.

REFERENCES

1. Busa J., Pir¢ V. // Bull. Appl. Math. Baia Mare, Romania, 2001. P.77-84.

2. Dario I. /I J. Electr. Engin. 1999. V.50. P.203-205.

3. Dario I. /! Zbor. vedec. pr. Vysokej Skoly technickej v Kosiciach, 1991. P.37-45.
4. Dario 1. I/ Zbor. 9. letnej skoly z diferenc. rov., Poprad, 1986. P.21-24.

5. Dario 1., Has¢ak A. Neurodynamické systémy. Elfa s.r.o., 2006. P. 133.

6. Darivo I. // 2nd Slovakian—Hungarian Joint Symp. on Appl. Machine Intelligence (SAMI 2004),
Herlany, 2004. P.219-227.

7. Dario I, Grincova A., Kravecova D. /| 4th Slovakian—-Hungarian Joint Symp. on Appl. Machine
Intelligence (SAMI 2006), Herlany, 2006. P. 538-543.

8. Demidovich B. P. Lectures on the Mathematical Theory of Stability. M.: Nauka, 1967.
9. Hopfield J.J., Tank D. W. // Biol. Cybern. 1985. V.52. P. 141-152.
10. Sincdk P., Andrejkova G. Neurénové siete. Elfa s.r.o., 1996. P. 63.

11. Weissenberger S. // Automatica. 1973. V. 9. P.653-663.



