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STABILITY THEORY BY LYAPUNOV'S FIRST METHOD
AND RECURRENT NEURAL NETWORKS

I. Da�no

Department of Mathematics, FEI, Technical University of Ko
sice, Slovak Republic

We give some relationship between Lyapunov's exponents and the recurrent neural network model
described by the system of delay-differential equations. We investigate the dynamic properties of the
speciˇc class of nonlinear delay-differential equations by studying the asymptotic behavior of their
solutions by means of Lyapunov's exponents.
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INTRODUCTION

The stability of nonlinear dynamical system is a difˇcult issue to deal with. When we
speak of stability in the context of a nonlinear dynamical system, we usually mean stability
in the sense of Lyapunov. A.M. Lyapunov (see [8]) presented the fundamental concepts
of the stability theory known as the ˇrst method of Lyapunov. This method is widely
used for the stability analysis of linear and nonlinear systems, both time-invariant and time-
varying (see [11]). As such it is directly applicable to the stability analysis of neural networks.
The study of neurodynamics may follow one of the two routes (see [5, 9, 10]), depending on
the application of interest:

1. Deterministic neurodynamics (see [1, 2, 7]), in which the neural network model has a
deterministic behavior. In mathematical terms, it is described by a set of nonlinear delay-
differential equations that deˇne the exact evolution of the model as a function of time.

2. Statistical neurodynamics (see [4, 6]), in which the neural network model is perturbed
by the presence of noise. In this case, we have to deal with stochastic nonlinear differential
equations, expressing the solution in probabilistic terms. The combination of stochasticity
and nonlinearity makes the subject more difˇcult to handle.

In this paper we restrict ourselves to deterministic neurodynamics.
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1. LYAPUNOV'S EXPONENTS

In order to proceed with the study of neurodynamics, we need a mathematical model for
describing the dynamics of nonlinear system. A model most naturally suited for this purpose
is the so-called state-space model. According to this model, we think in terms of a set of state
variables whose values are supposed to contain sufˇcient information to predict the future
evolution of the system. Let

x1(t), x2(t), . . . , xn(t) (1)

denote the state variables of a nonlinear dynamical system, where continuous time t is the
independent variable and n is the order of system. The dynamics of a large class of nonlinear
dynamical systems may then be cast in the form of a system of ˇrst-order differential equations
written as follows:

d

dt
xi(t) =

n∑
j=1

pij(t)xj(t) +
n∑

j=1

qij(t)uj(t) +
n∑

j=1

dij(t)yj(t) + Ii(t), (2)

where all functions

pij(t), qij(t), dij(t), Ii(t) (3)

are assumed to be continuous functions of time,

pii(t) < 0, |pij(t)| � p < +∞, |qij(t)| � q < +∞, |dij(t)| � d < +∞,
(4)

p �

√√√√ n∑
j=1

n∑
i=1

p2
ij(t), q �

√√√√ n∑
j=1

n∑
i=1

q2
ij(t), d �

√√√√ n∑
j=1

n∑
i=1

d2
ij(t),

uj(t) =
1
2
xj(t) (|xj(t − τ) + 1| − |xj(t − τ) − 1|) , τ > 0, t − τ < t0, (5)

yj(t) =
1
2
(|xj(t) + 1| − |xj(t) − 1|),

(6)
i = 1, 2, . . . , n, j = 1, 2, . . . , n.

This system of delay-differential equations can be used to model recurrent neural networks.
The initial value problem for (2) is deˇned as follows (see [5, 7]):

On the initial set

Et0 = {t − τ : t − τ < t0, t ∈ 〈t0,∞)} ∪ {t0} (7)

let a continuous initial vector function

ϕ(t) = (ϕ0(t), ϕ1(t), ϕ2(t), . . . , ϕn−1(t)) (8)

be given.
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We have to ˇnd the solution

x(t) = (x1(t), x2(t), . . . , xn(t)) , xi(t) ∈ C1 (〈t0,∞)) (9)

of (2) satisfying

xj+1(t) = ϕj(t), j = 0, 1, 2, . . . , n − 1, (10)

if

t − τ � t � t0, i = 1, 2, . . . , n. (11)

Under the above assumptions, the initial value problem (2), (10) has exactly one solution on
the interval 〈t0,∞), where

ϕj(t) = xj+1,0ψj(t), xj+1(t0) = xj+1,0, (12)

ψj(t0) = 1, j = 0, 1, . . . , n − 1. (13)

In the following we consider the system of nonlinear delay-differential equations of the form

d

dt
xi(t) =

n∑
j=1

pij(t)xj(t) +
n∑

j=1

qij(t)uj(t) +
n∑

j=1

dij(t)yj(t), i = 1, 2, . . . , n. (14)

Deˇnition 1.1. A superior Lyapunov exponent (see [3, 5]) of a vector function x(t) is
called a real number λ which is deˇned by

λ = lim sup
t→∞

(
1
t

ln ‖x(t)‖
)

.

Deˇnition 1.2. An inferior Lyapunov exponent of a vector function x(t) is called a real
number λ which is deˇned by

λ = lim inf
t→∞

(
1
t

ln ‖x(t)‖
)

,

where

‖x‖ =
√

(x, x), (x, y) =
n∑

i=1

xiyi.

Deˇnition 1.3. A superior central exponent of Cauchy's matrix of a linear differential
system is called a real number Ω which is deˇned by

Ω = inf
T>0

(
lim sup

k→∞

1
kT

k∑
i=1

ln ‖X (iT, (i − 1)T )‖
)

=

= lim
T→∞

(
lim sup

k→∞

1
kT

k∑
i=1

ln ‖X (iT, (i − 1)T )‖
)

. (15)
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Deˇnition 1.4. An inferior central exponent of Cauchy's matrix of a linear differential
system is called a real number ω which is deˇned by

ω = inf
T>0

(
lim sup

k→∞

1
kT

k∑
i=1

ln
∥∥X−1 (iT, (i − 1)T )

∥∥−1

)
=

= lim
T→∞

(
lim sup

k→∞

1
kT

k∑
i=1

ln
∥∥X−1 (iT, (i − 1)T )

∥∥−1

)
. (16)

We have to ˇnd the norm of Cauchy's matrix of the linear differential system by using the
following formula:

‖X(t, s)‖ = max
x

‖x(t)‖
‖x(s)‖ , (17)

where we have to search a maximum element of a set of all solutions of a linear differential
system.

Choose any nontrivial solution

w(t) = (w1(t), w2(t), . . . , wn(t)) (18)

of the set of all solutions of (14). If aw ij(t) denotes pij(t) + qij(t)vj(t),

i = 1, 2, . . . , n, j = 1, 2, . . . , n

and

vj(t) =
1
2
(|wj(t − τ) + 1| − |wj(t − τ) − 1|), (19)

then w(t) is the solution of the nonlinear differential system

d

dt
zi(t) =

n∑
j=1

aw ij(t)zj(t) +
n∑

j=1

dij(t)yj(t), i = 1, 2, . . . , n, (20)

too. The equality

aw ij(t) = pij(t) + qij(t)vj(t) (21)

implies the fact that all coefˇciens aw ij(t) are continuous functions of time and

|vj(t)| � 1, |aw ij(t)| � |pij(t)| + |qij(t)| · |vj(t)| � p + q = a,
(22)

t ∈ 〈0, +∞) , 0 < a < +∞.

Theorem 1.1. Let a ∈ R satisˇes the inequality (22). Then, every nontrivial solution z(t)
of nonlinear differential system (14) satisˇes the inequality

e−M(t−t0) � ‖z(t)‖
‖z(t0)‖

� eM(t−t0), t � t0, M = a + d. (23)
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Proof. Due to the fact that all constants a do not depend on the parameter w, there
sufˇces to prove this theorem for all nontrivial solutions of (20).

In the ˇrst part of the proof we show that any nontrivial solution z(t) of (20) satisˇes the
inequality ∣∣∣∣ d

dt
‖z(t)‖2

∣∣∣∣ � 2M ‖z(t)‖2 . (24)

Modiˇcation of the left-hand side of (24) gives

∣∣∣∣ d

dt
‖z(t)‖2

∣∣∣∣ =
∣∣∣∣ d

dt
(z(t), z(t))

∣∣∣∣ = |(z′(t), z(t)) + (z(t), z′(t))| =

= 2 |(z′(t), z(t))| � 2 ‖z′(t)‖ ‖z(t)‖ = 2

√√√√ n∑
i=1

(z′i(t))
2 ‖z(t)‖ =

= 2

√√√√ n∑
i=1

(aw i1(t)z1(t) + . . . + aw in(t)zn(t) + di1(t)y1(t) + . . . + din(t)yn(t))2 ‖z(t)‖ �

� 2

⎛
⎝

√√√√ n∑
i=1

a2
w i1(t)z

2
1(t) + . . . +

√√√√ n∑
i=1

d2
i1(t)y

2
1(t) + . . . +

√√√√ n∑
i=1

d2
in(t)y2

n(t)

⎞
⎠ ‖z(t)‖ �

� 2

⎛
⎝

√√√√ n∑
j=1

n∑
i=1

a2
w ij(t) ‖z(t)‖ +

√√√√ n∑
j=1

n∑
i=1

d2
ij(t) ‖y(t)‖

⎞
⎠ ‖z(t)‖ �

� 2a ‖z(t)‖2 + 2d ‖y(t)‖ ‖z(t)‖ � 2a ‖z(t)‖2 + 2d ‖z(t)‖2 =

= 2 (a + d) ‖z(t)‖2 = 2M ‖z(t)‖2
. (25)

The ˇrst part of the proof is complete.
In the second part of the proof, multiplying both sides of this inequality by ‖z(t)‖−2, one

may obtain

−M � d

dt
ln ‖z(t)‖ � M. (26)

Integration of (26) gives

(t − t0) � ln
‖z(t)‖
‖z(t0)‖

� M(t − t0). (27)

Consequently,

e−M(t−t0) � ‖z(t)‖
‖z(t0)‖

� eM(t−t0).

Notice that the solution w(t) satisˇes the inequality (23), too.
The proof is complete.
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Remark. Implicit in this theorem is the fact that if z(t) satisˇes the inequality (23), then
Lyapunov's exponents satisfy the inequality

−M � λ � λ � M, −M � ω � Ω � M. (28)

CONCLUSION

Nonlinear dynamical systems of order greater than 2 have the capability of exhibiting
a chaotic behavior that is highly complex. Lyapunov's exponents can be used to study a
chaotic behavior of solutions of neurodynamical systems, too.
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