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FOUR-POINT TRANSFORMATION METHODS IN
APPROXIMATION AND THE SMOOTHING PROBLEMS

N. D.Dikoussar
Joint Institute for Nuclear Research, Dubna

The main goal of the adaptive local strategy consists in reducing the complexity of computational
problems. We propose a new approach to curve approximation and smoothing based on 4-point
transformations or Discrete Projective Transforms (DPT). In the framework of DPT the variable point
is related to three data points (accompanying points). The variable y ordinate is expressed via the
convolution of accompanying y ordinates and weight functions that are deˇned as cross-ratio functions
of four x coordinates. DPT has some attractive properties (natural norming, scale invariance, threefold
symmetry, ®4-point¯ orthogonality), which are useful in designing new algorithms. Diverse methods
and algorithms based on DPT have been developed.
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INTRODUCTION

Efˇcient computing methods for approximation and the smoothing problem are of great
signiˇcance in the area of the development of information technologies. Fast processing
of huge streams of data in a real time mode needs robust, 
exible and rapidly computable
algorithms. Investigations in this area are developed intensively. Such known methods as
recursive least squares (RLS) of the third and higher degrees, splines, Kalman ˇltering (KF)
have high computing complexity, especially in the case of smoothing of scattered data.

Smoothing algorithms oriented toward the real time mode require new, frequently con-

icting, properties and restrictions: stability to random errors, adaptability to input data, high
speed of processing for limited resources of storage and time. Tasks with such requirements
arise everywhere, for example, in experimental nuclear physics, in pattern recognition, in tech-
nological processes managements, in digital signal processing, in mathematical techniques of
calculations, etc.
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A new approach to the problem of efˇcient computing of an optimal estimation f̂∗ at a
given point x∗ using a polynomial model is proposed. We want to estimate an unknown
signal from some noisy or not noisy data:

{S} = {(xk, f̃k)}N
k=1, xk < xk+1, N � 4, (1)

where f̃k = f(xk) + ek, ek ∼ iid N(0, σ2). If f̃∗ are obtained in numerical computations
with small errors (σ2 ≈ 0), the problem of estimation of f̂∗ is related to approximation
(interpolation).

When the number (N) of samples is known, the least square estimation of coefˇcients
a = [a0, a1, . . . , an]T in the standard polynomial model (n is the degree of the polynomial)

f(x) ≈ Pn(x;a) = a0 + a1x + a2x
2 + . . . + anxn + e (2)

is written as
â = (AT A)−1AT f̃ , (3)

where f̃ = [f̃1, f̃2, . . . , f̃N ]T is a vector of measurements and A is the N × (n+1) regression
matrix with elements xk

i , i = 1, 2, . . . , N ; k = 0, 1, . . . , n.
As is well known, the problem of computational complexity and stability of the task (1)Ä(3)

becomes more complicated if n and σ2 are increased. When errors are small, such problems
are removed by using splines or the piecewise polynomial approximation. The smoothing
methods (such as splines, nonparametric or stochastic approximation methods (SA) [1Ä4])
are used for noisy data. A number of algorithms and programs in this ˇeld can be found in
modern program packages Matlab, Maple, SPlus, etc.

Different recurrent methods, such as autoregressive (AR), SA or RLS methods, are used
when the data points (1) represent a time series. In these cases the vector â and the inverse
matrix (ATA)−1 are determined by recursive procedures. It is known that RLS is restricted
in practice when n � 3, because the computational complexity is proportional to n2 [5].

1. αβ-PARAMETRIZATION

The goal is to design a DPT-polynomial model that is equivalent to Pn(x) and possesses
by uniform approximation on the interval, small computational complexity, robustness, adap-
tability and controllability. A polynomial with such properties can be constructed using
4-point transformations or DPT (Discrete Projective Transforms) that have been developed
specially for these purposes [6, 8, 9]. It is necessary to note two essential moments in the
structure of the polynomial model based on DPT.

First, DPT uses three reference points on the plane: {(xi, ri)}, i = 0, 2,
∏
i�=j

(xi −xj) �= 0.

These points are related to f(x) or samples and are called ®a mark¯ or ®companion points¯.
They are common points for both f(x) and Pn(x).

Second, the reference points are used as parameters of the DPT-model: ri, i = 0, 2 are
coefˇcients of the quadratic part of the DPT-model and xi are used for continuous paramet-
rization of the power functions {xn}, n = 0, 1, 2, . . .

Insertion of the reference points into the polynomial model affects the uniformity of
approximation and the computational complexity, whereas continuous parametrization of the
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model allows one to introduce various modes of control by the accuracy of approximation
and the smoothing. These properties extend the limits of such classical methods as the
least-squares method (LSM), RLS, splines, etc.

Both stability and computational complexity in Eqs. (2), (3) essentially depend on the
choice of basic functions. In a number of cases the use of {xk}n

k=0 as basic functions results
in an increase of the computational complexity. DPT-methods enhance stability to errors
and the computation speed due to: a) parametrization of the basic functions; b) reducing the
model degree and c) recursive computation of parameter estimations.

1.1. What are Four-Point Transformations? In the 4-point transformation methods [6,9]
current coordinates (xτ , yτ ) ∈ R2 are considered always in the aggregate with coordinates of
the reference points. In such a quadruplet the parameters α and β are deˇned as τ = xτ − x0

at τ = α, β, where x ≡ xτ (Fig. 1). The relation between the point (x, y) and the rest points

Fig. 1. The result of M ↔ M�

transformation

in the tetrad is established by convolution of two vectors
v = [v1, v2, v3]T and y = [yα, yβ, y]T :

y� = vT y = yαv1 + yβv2 + yv3, (4)

where the symbol � denotes the direct DPT. Coordinates
{vi} of the weight vector v depend on τ and parameters
α, β. Four points in the quadruplet are related in accordance
with the special cross-ratio algorithm: [13]/[24] : [23]/[14],
where [ij] = xj − xi [6]. Depending on the indexing of
points in the tetrad {x0, xα, xβ , x} this algorithm generates
sets of various weight functions. If the ˇrst point is ˇxed,

we obtain six functions, three of which are different. We shall denote these functions as
vi(τ ; α, β), and wi(τ ; α, β), i = 1, 2, 3. vi are obtained from the tetrad {0αβτ}, whereas wi

are got using the tetrad {ταβ0}:

v1 =
τβ

(τ − α)γ
, v2 =

−τα

(τ − β)γ
, v3 =

αβ

(τ − α)(τ − β)
,

3∑
i=1

vi = 1, (5)

w1 =
−τ(τ − β)

αγ
, w2 =

τ(τ − α)
βγ

, w3 =
(τ − α)(τ − β)

αβ
,

3∑
i=1

wi = 1, (6)

where γ = β − α.
In Eqs. (4), (5) for τ = 0 we have y�

0 = y0, whereas values y�
α, y�

β are deˇned by passage
to the limits in Eq. (5) at τ → α and τ → β:

y�
α = −αβ

γ
y

′

α +
α2

γ2
(yβ − yα) + yα and y�

β =
αβ

γ
y

′

β − β2

γ2
(yβ − yα) + yβ .

From Eq. (4) the inverse transformation IDPT is deˇned as

y = wTy� = yαw1 + yβw2 + y�w3, (7)

where y� = [yα, yβ, y�]T and w = [w1, w2, w3]T .
Functions wi are quadratic functions with respect to τ and fractional rational functions

with respect to continuous parameters α and β.
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Equations (4), (7) deˇne direct and inverse 4-point transformations, based on the reference
points and weight functions v and w. From a geometrical point of view, DPT and IDPT
transform the point M (x, y) on the curve f (original) into the point M �(x, y�) of another
curve f� (image) and vice versa, leaving the point M0(x0, y0) immovable (Fig. 1). The shape
of the curve f� is changed with respect to the shape of f , since the denominators of functions
{vi} depend quadratically on parameters and variables. For example, points on straight lines
and quadratic parabolas are transformed into the horizontal y� = y0 = const.

1.2. Properties of DPT. Let us note some properties of DPT.

1◦. c� = c, where c is a constant, since
3∑

i=1

cvi = c

3∑
i=1

vi = c · 1 = c.

2◦. Decrease the degree of monomials {xn} by two. From (4) and (5) using {0αβx}
and y = [αn, βn, xn]T , αβγ �= 0, n = 0, 1, 2, . . . we obtain the 4-point transformation for
functions {xn} [6]:

[xn]� = αβx

[
n−1∑
i=1

αi−1
n−i−1∑

k=1

βk−1xn−i−k−1

]
︸ ︷︷ ︸

zn−3(x;α,β)

= αβxzn−3(x; α, β), (8)

whence it follows that

1� = 1, [x]� = 0, [x2]� = 0, [x3]� = αβx, . . .

The degree of polynomial zn−3(x; α, β) with respect to x is less than the degree of xn by
three.
3◦. Orthogonal property of the vector v to vectors forming from ordinates of points situated
on a straight line or a quadratic parabola. From 1◦ and 2◦ using the linear combination
y = ax2 + bx + c one can obtain: y� = vT y = y0, where y0 ≡ c. From this it follows that
vT Δy = 0, where Δy = [yα − y0, yβ − y0, y − y0]T .

The orthogonal property is useful for transformation data points scattered around a straight
line or a quadratic parabola, since transformation of the difference Δỹ = ỹ − ỹ0 leads to
the error equation: Δỹ� = vT (Δy + Δe) = vT Δy + vT Δe = 0 + vT Δe = ε, where
Δe = [eα−e0, eβ −e0, e−e0]T . Thus, Δe is transformed into ε via square-law denominators
of v. In this case, the linear or quadratic systematization in Δe is removed.

1.3. Parametrization of the Power Functions {xn}. To achieve αβ-parametrization of
the power functions {xn}, we use the inverse transformation (IDPT). To do this, we substitute
xn, αn, βn and [xn]� from Eq. (8) into Eq. (7) in place of y, yα, yβ and y�, respectively.
We get

xn = αnw1 + βnw2 + [xn]�w3 = αnw1 + βnw2 + αβxzn−3(x; α, β)w3 =
= αnw1 + βnw2 + x(x − α)(x − β)︸ ︷︷ ︸

Q

zn−3(x; α, β) = αnw1 + βnw2 + Qzn−3(x; α, β)︸ ︷︷ ︸
sn

=

= αnw1 + βnw2 + sn(x; α, β), n = 0, 1, 2, . . . (9)

Thus, in Eq. (9) the elementary power functions xn are parameterized by α, β continuously
and are partitioned into two parts: the square-law parabola (αnw1+βnw2) and the polynomial
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Fig. 2. Plots of sn, zn−3 and xn

sn = Qzn−3(x; α, β), where Q(x; α, β) = x(x − α)(x − β) is a ®zeroed¯ cubic parabola.
Figure 2 shows plots of sn, zn−3 and xn.

Remark 1. Parameters α and β in Eq. (9) are chosen arbitrarily provided αβγ �= 0.
1.4. Parametrization of the Polynomial P (x; a). Polynomials zn−3(x; α, β) in Eq. (9)

are determined by recurrence [9]:

zj = (x + α)zj−1 − αxzj−2 + βj , z−1 = z−2 = 0; j = 0, 1, . . . , n − 3 (10)

and represent elementary symmetric polynomials. For n = 3, 4, 5 we obtain

z0 = 1, z1 = x + α + β, z2 = x2 + α2 + β2 + αx + βx + αβ, . . .

Substituting the right-hand side of Eq. (9) into Eq. (2) with account of Eq. (10) and the
property 1◦ of DPT, we have

P (x) =
n∑

i=0

aix
i =

n∑
i=0

ai[αiw1 + βiw2 + si] = Aw1 + Bw2 +
n∑

i=0

aisi =

= Aw1 + Bw2 + a0︸ ︷︷ ︸
Π(x;α,β,r)

+Q

n−3∑
i=0

cizi(x; α, β) = Π(x; α, β, r) + QUn−3(x; α, β), (11)

where A =
n∑

i=0

aiα
i, B =

n∑
i=0

aiβ
i, r = [Pα, Pβ, P0]T , P∗ ≡ P (∗) and ci are coefˇcients.

Considering that Π(x; α, β, r) = wT r = Pαw1 + Pβw2 + P0w3, the values of the polynomial
Un−3(x; α, β) = [P (x) − Π(x; α, β, r))]/Q at points 0, α and β can be found by suitable
limits: Un−3(ρ) = lim

x→ρ
Un−3(x; α, β), ρ = α, β, 0, i.e.,

Un−3(α) = (αγ)−1[(α2Pβ − γ2P0)/(αβγ) − P
′

α],

Un−3(β) = (βγ)−1[(β2Pα − γ2P0)/(αβγ) + P
′

β ], (12)

Un−3(0) = (αβ)−1[(α2Pβ − β2Pα)/(αβγ) + P
′

0].

Hence, Eqs. (11), (12) present a continuous αβ-parametrization of the standard polynomial
P (x; a) in the form of the sum of a square-law parabola Π(x; α, β, r), passing through the
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reference points and the reduced polynomial Un−3 =
n−3∑
i=0

cizi(x; α, β) multiplied by the

®zeroed¯ cubic parabola Q.
So, we get a new decomposition of f(x) ∈ C[α,β] using wi and basis {sk}:

f(x) ≈ wT r +
n∑

k=3

cksk(x; α, β), (13)

where s3 = Q and r = [rα, rβ , r0]T are ordinates of the reference points. Polynomials sk

have a structure of kth order monosplines, which play, in a certain sense, the same role in
approximation theory as Chebyshev polynomials do in the classical function approximation
theory. From Fig. 2 one can see that polynomials {sk} have a better approximation quality
than monomials {xk}: when x tends to zero they also tend to zero by a linear or quadratic
law, depending on the parity of k.

1.5. Expansion of Pn(x) by Qi(x; α, β). It should be pointed out that if we apply Eq. (11)
sequentially for ®reduced¯ polynomials Un−3i(x; α, β)

Pn(x) = Π0(x; α, β, r0) + Q[Π1(x; α, β, r1) + . . . + Q[Πi(x; α, β, ri)] . . .]],

we achieve expansion of the standard polynomial Pn(x) by degrees of Qi with multipliers
Πi, i = 0, 1, 2, . . . , k 
 n:

Pn(x) =
k∑

i=0

QiΠi(x; α, β, ri), k 
 n, (14)

where Q = τ(τ − α)(τ − β), Πi(x; α, β, ri) = rαiw1 + rβiw2 + r0iw3, and ri are unknown
reference points on polynomials Un−3i.

2. THE STRUCTURE AND PROPERTIES OF THE REDUCED MODEL

The properties of the standard polynomial model (2) are changed essentially upon
αβ-parametrization of Pn(x).

First, the choice of the reference coordinates from data points (1) provides a natural
attaching to the curve f . The ordinates r∗ are chosen depending on σ2 as r∗ ≡ f∗ or r∗ = f̂∗,
where f̂∗ is the local estimation of neighboring ordinates.

Second, the parameterized model (13) consists of two parts: the ˇxed part (wT r) and the
free part (sT c), i.e.,

f(x; α, β; r) = wT r + QzT c + e, (15)

where zT = [z0, z1, . . . , zm] is a ®reduced¯ basis and c = [c0, c1, . . . , cm]T is the vector
of unknown coefˇcients (m = (n − 3) < N).

This makes possible calculation using continuous parameters α, β as variables and signif-
icantly extends the frames of algorithmization of calculations from the viewpoint of construc-
tion of recursion schemes. It is necessary to note that Eq. (15) extends the ClenshawÄHayes
polynomial presentation [7].

Third, reduction of the power of basis functions permits one to decrease the computational
complexity of task and to increase the robustness of algorithms.
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Fig. 3. Decomposition of the 5th order polynomial p(x) via wj(x; α, β) and sj(x; α, β), j = 1, 2, 3 (a).
Reducing p(x) to the square-law parabola u (b)

Dividing Eq. (15) by Q �= 0, one can transform the data points {f̃(xk)} into {ũ(xk)}:

ũ(x) = (f̃(x) − wT r)/Q(x; α, β) = u(x) + ε(x). (16)

To approximate the transformed data ũ(x) a polynomial of lower degree is required. In
this case the dimension of the initial task is diminished:

ũ(x) = zT c + ε =
n−3∑
i=0

cizi + ε, (17)

where ε(x) = e(x)/Q(x; α, β). Figure 3 shows an example of reducing the 5th order
polynomial p5(x; α, β, r) to the quadratic polynomial

u = c0

z0︷︸︸︷
(1) +c1

z1︷ ︸︸ ︷
(x + α + β)+c2

z2︷ ︸︸ ︷
(x2 + (α + β)x + αβ + α2 + β2) .

2.1. Stability of f̃ → ũ Transformation to Errors. In accordance with Eq. (16), the
errors e(x), e(α), e(β), e(0) are transformed into ε(x), ε(α), ε(β), ε(0) via the denominator
of functions 1/Q(x; α, β) and wi/Q(x; α, β).

Figure 4 shows the behaviour of ε∗n in moving coordinates (the origin 0n is shifted to
the right by the step h > 0 with respect to the unmoved curve). If αn < βn < 0n < xn,
then Qn(xn; αn, βn) = h3(n + 2)(n + 1), where αn = −(n + 1)h, βn = −nh and xn = h;

Fig. 4. Weight functions (a) and the behaviour of ε∗n in moving coordinates (b)



Four-Point Transformation Methods in Approximation and the Smoothing Problems 541

n = 1, 2, . . . (Fig. 4, at upper right). Graphs of εxn and ε0n vary as n−2. Both errors εα

and εβ (reference points rα and rβ) approach n−1. Functions n−1 and n−2 are shown for
comparison. Thus, Eqs. (9)Ä(14) and (16) allow one to reduce the dimension of the task
(1)Ä(3) as well as to provide stability of computations with respect to input errors. The
continuous parameters α and β are control parameters of the computational process.

3. LOCAL CUBIC APPROXIMATION AND SMOOTHING

The above approach has been used for the development of new algorithms for piecewise-
cubic approximation and smoothing [10, 11, 20]. Taking n = 3 in Eq. (13), we obtain the
three-point spline model (TPS):

S = wT r + θQ(x; α, β). (18)

This model depends upon three ˇxed (r) and one free (θ) parameters. Fixed parameters
r are used for relating the model to input data, θ is an unknown parameter. Based on the
TPS-model, the ˇrst order RLS-procedure has been obtained for estimation of the θ-parameter
using the following recursion:

θ̂n = θ̂n−1 + Kn[f̃n − Πn(h;win, r̂n) − θ̂n−1Qn(h; αn, βn)], θ0 = 0, (19)

where n = 1, 2, . . .; Kn = Qn/
n∑

k=1

Q2
k is the ampliˇcation factor.

Equation (19) has been used for developing a real time-oriented algorithm LOCUS [10]
and an algorithm for automatic knot detection in piecewise-cubic approximation and smooth-
ing [11]. The free knots optimization problem is a very difˇcult nonlinear problem [19] and
it is important for applications. The main goal is to ˇnd an optimal subdivision so that the
errors over the subintervals are as small as possible. This problem is closely related to the

Fig. 5. APCA-approximation data without noise: a) the Runge function; b) W function
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optimum choice of knots in approximation by cubic splines. For the automatic tracking of a
cubic segment of a curve the criterion of uniformity of the third derivative of the cubic model
(18) is used.

Fig. 6. APCA-smoothing of noisy data: a) ®motorcycle¯ data [2]; b) the test function [3]

A Windows application APCA (Autotracking Piecewise-Cubic Approximation) was deve-
loped [14,15]. The efˇciency of the method and the algorithm is conˇrmed by processing real
scattered data and approximation of complex curves presented by data points with σ2 ≈ 0. An
example of results for the Runge and W -shape functions segmentation is shown in Fig. 5 [11].
Figure 6 illustrates new APCA-smoothing results [20, 21] of the so-called motorcycle data
from the book [2] and simulated data ỹi = sin (2π(1 − xi)2 + xiεi), x ∈ [0, 1]; i = 1, n,
n = 200; εi ∼ N(0, 1) from [3]. The distributions of residuals (histograms) and the errors
e(xi) = s(xi) − sin (2π(1 − x2

i )) are also shown. Vertical lines show the knot-positions
detected by APCA.

CONCLUSIONS

We have proposed a 4-point methodology for reducing the polynomial degree and for pa-
rametrization of P (x;a) using reference coordinates as continuous parameters for control by
the accuracy of approximation or smoothing. This approach extends the framework of known
classical methods and improves the quality and efˇciency of approximation algorithms. A
number of methods and algorithms have been developed using DPT: the adaptive projective
ˇlters for track ˇnding [8]; DPT-function parametrization for uniform approximation over the

whole interval [9]; polynomial approximation f(x) ∈ C
(n)
[a,b], f(x) ∈ L2 [9]. Comparison

of DPT approximation with Chebyshev and Pade approximation has been done. While the
Pade-approximants behave better near zero, the DPT-approximants give smaller maximum
errors over the whole interval, however, they seem to be greater than the maximum error of
the Chebyshev-approximants. The quality of the DPT-approximants greatly depends on the
choice of derivative points [12]; TPS-model and two-stage recursive algorithm LOCUS-P [10]
for piecewise-cubic smoothing.

The estimate θ̂ is determined by the recursive least squares procedure, with the ampliˇca-
tion factor Kn(α, β) ∼ O(n−3), where α, β are smoothing parameters; the 9-point model for
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surface smoothing [17]; in [13,18] the DPT of polynomials and the assessment of the polyno-
mial degree were studied; the piecewise-cubic algorithm with auto detection of knots [11,21]
(Figs. 5, 6); the papers [20] and [21] represent successful smoothing of strongly noising data
by cubic splines with free knots based on the model (18), etc.
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