P13-2025-2

С. В. Митрофанов¹, Ю. Г. Тетерев^{1,*}, А. И. Крылов¹, А. Т. Исатов^{1,2}, К. Д. Тимошенко¹, Е. А. Болатказыев^{1,2,**}

ИЗМЕРЕНИЕ ПРОФИЛЯ ПУЧКА НА ВХОДЕ ГАЗОНАПОЛНЕННОГО СОЛЕНОИДА GASSOL

Направлено в журнал «Письма в ЭЧАЯ»

¹ Объединенный институт ядерных исследований, Дубна

² Евразийский национальный университет им. Л. Н. Гумилева, Астана

^{*} E-mail: teterev@jinr.ru

^{**} E-mail: bea@jinr.ru

P13-2025-2

Митрофанов С.В. и др. Измерение профиля пучка на входе газонаполненного соленоида GASSOL

Создан и испытан измеритель профиля пучка, который будет использоваться на входе газонаполненного соленоида GASSOL при его запуске и настройке. Измеритель профиля изготовлен в виде мозаики из катодов, с каждого из которых измеряется ток, возникающий за счет вторичной эмиссии при бомбардировке его ускоренными ионами. Для измерения токов с катодов используется соответствующее число каналов усилителей тока. Создана программа для визуализации профиля пучка. В эксперименте на пучке ионов 40 Ar⁺⁴ энергией 4 МэВ/нуклон установлено, что нижняя граница чувствительности измерителя профиля меньше 0,001 нА частиц. Верхняя граница чувствительности была установлена путем проведения тепловых расчетов и составила 100 нА частиц. Критической является вероятность нарушения контактов сигнальных кабелей в результате нагрева. Точность определения центра пучка ±1 мм находится в пределах заданного допуска на радиальное смещение оси пучка относительно магнитной оси соленоида.

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2025

Mitrofanov S. V. et al.

P13-2025-2

Beam Profile Measurement at the Entrance of the Gas-Filled Solenoid GASSOL

A beam profilometer has been developed and tested for use at the entrance of the gas-filled solenoid GASSOL during its commissioning and adjustment. The profilometer is constructed as a mosaic of cathodes, each measuring current generated by secondary emission during bombardment by accelerated ions being measured from each cathode. A corresponding number of current amplifier channels is used to measure the currents from the cathodes. A software program has been developed for visualizing the beam profile. During an experiment with a ⁴⁰Ar⁺⁴ ion beam at an energy of 4 MeV per nucleon, the lower sensitivity limit of the profilometer was found to be less than 0.001 pnA. The upper sensitivity limit, determined through thermal calculations, is 100 pnA. A critical factor is the risk of signal cable contact failures due to heating. The accuracy of beam centre determination, ± 1 mm, falls within the specified tolerance for radial displacement of the beam axis relative to the magnetic axis of the solenoid.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2025

введение

Установка GASSOL — это газонаполненный сепаратор ионов, работающий на базе сверхпроводящего магнитного соленоида. С его помощью продукты реакции полного слияния отделяют от ионов первичного и рассеянного пучка, а также от продуктов фоновых реакций. Он разработан в ЛЯР ОИЯИ в сотрудничестве с компанией «Нева-Магнит». В ближайшее время планируется установка его в экспериментальном зале ускорителя циклотрона ДЦ-280.

В работе [1] приведены результаты численной симуляции ионной оптики в газонаполненном соленоиде GASSOL. Как указано в этой работе, источником фоновых событий являются следующие составляющие: атомы отдачи материала мишени, рассеянные ионы пучка, продукты реакций многонуклонных передач, продукты взаимодействия пучка со стенками ионопровода, коллиматорами, с держателем мишени, с наполняемым газом и т. д. Сечения всех этих процессов трудно оценить. Необходимо учесть все идущие процессы, а затем смоделировать для каждого фонового продукта динамику перезарядки в газе и, наконец, оценить вероятность достижения фокальной плоскости. Сложность расчета и ненадежность параметров, необходимых для его реализации, не позволяет получить обоснованную и достоверную оценку количества фоновых продуктов реакции в выходной камере. Реальные значения будут получены в результате экспериментов.

По сравнению с другими созданными в мире сепараторами на базе соленоида в конструкцию GASSOL внесены существенные новые элементы, как, например, статическая турбина, расположенная в центре соленоида. С ее помощью планируется существенно повысить степень очистки исследуемых продуктов реакции от фона. Но и здесь возникает много неопределенностей, требующих экспериментального разрешения.

В работе [1] показано, что трансмиссия продуктов реакции полного слияния до фокальной плоскости на установке GASSOL может достигать 58 %. Как это и планировалось при принятии решения о создании GASSOL, столь высокое значение трансмиссии позволяет проводить экспериментальное изучение химических свойств сверхтяжелых элементов. С этой целью продукты реакции полного слияния, вылетающие из производящей мишени под действием импульса пучка, останавливают на выходе в среде инертного газа (обычно смеси He-Ar), а затем транспортируют в потоке газа через капилляр в хроматографическую систему детектирования. Схема соленоида показана на рис. 1.

Рис. 1. Схема установки GASSOL

Планируется, что при работе GASSOL в основном будут использоваться первичные пучки ионов ⁴⁰Ar или ⁴⁸Ca с энергией 4–5 МэВ/нуклон и максимальной интенсивностью 6,5 мкА частиц, которая к настоящему времени достигнута в экспериментах на ускорителе ДЦ-280.

На время экспериментального изучения эффективности применения статической турбины и выбора оптимальных условий работы планируется, что на выходе сепаратора будут размещены полупроводниковые детекторы. С их помощью возможна идентификация продуктов реакции, прошедших сепаратор, и экспериментально установлено соотношение эффект-фон. К сожалению, в месте их размещения при проведении экспериментов создается интенсивный поток быстрых нейтронов, а радиационная стойкость полупроводниковых детекторов к ним невысокая. Для обеспечения работо-способности детекторов настройка сепаратора будет проводиться при токах первичного пучка в диапазоне 0,01–0,1 нА частиц.

Для того чтобы при работе газонаполненного соленоида добиться максимальной очистки продуктов реакции полного слияния, первичный пучок необходимо хорошо сфокусировать и тщательно центрировать с магнитной осью. Например, на установке SOLEROO [2] центровку пучка осуществляли, пропуская его через вводимый на время настройки коллиматор. Положение пучка настраивали так, чтобы показания цилиндра Фарадея (ЦФ), установленного на стоппере, достигали максимального значения. К сожалению, ток пучка в указанном диапазоне 0,01-0,1 нА частиц невозможно измерить с помощью ЦФ. Это обстоятельство не позволяет воспользоваться приведенным методом. Продуктивным решением для контроля совмещения оси пучка с магнитной осью соленоида при настройке сепаратора является использование чувствительного измерителя профиля пучка, который устанавливается перед мишенью. С его помощью возможен и контроль за непревышением допустимых размеров пучка.

Задачей измерителя профиля является и измерение относительной интенсивности первичного пучка. Это накладывает требование на диапазон интенсивностей, в котором детектор должен работать. Начало этого диапазона должно быть как можно более низким, чтобы контролировать ток пучка во избежание порчи полупроводниковых детекторов. Верхнюю границу диапазона желательно иметь как можно выше, чтобы иметь возможность в более широком диапазоне сопоставлять его показания с показаниями приборов, которые будут использоваться в режиме эксплуатации установки GASSOL. Во всем своем диапазоне работы детектор должен обладать достаточной радиационной стойкостью.

Использование для создания измерителя профиля каких-либо видов детекторов ограничивается и другим условием. В этой установке пучок попадает на мишень, проходя через область дифференциальной откачки, где происходит разделение объема высокого вакуума (> 10⁻⁴ Па) с объемом, заполненным газом водорода или гелия при давлении около 1 Па. Детектор должен надежно работать в этой среде.

Для создания измерителя профиля пучка наиболее подходящим является детектор, основанный на вторичной эмиссии. Как показано в работе [3], такого типа детектор по сравнению, например, с люминофорами имеет лучшую чувствительность, линейность, радиационную стойкость и стабильность показаний в процессе длительной эксплуатации.

КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ ИЗМЕРИТЕЛЯ ПРОФИЛЯ ПУЧКА

Измеритель профиля изготовлен в виде мозаики из катодов, с каждого из которых измеряется ток вторичной эмиссии, возникающий при бомбардировке его ускоренными ионами. Известно, что коэффициент вторичной эмиссии пропорционален дифференциальным ионизационным потерям в веществе. Чтобы иметь высокие значения радиационной стойкости и коэффициента вторичной эмиссии, в качестве материала для таких катодов может быть выбран графит или алюминий. Для изготовления графитового катода использована наиболее доступная его форма в виде грифельного стержня. Выбор конструкции облегчает большое разнообразие диаметров имеющихся в продаже грифелей и наличие алюминиевой проволоки со стандартными сечениями 1,5, 2, 2,5, 4 мм² и т. д.

Для выбора диаметра катодов руководствовались результатами расчетов [4], выполненных для проведения экспериментов на газонаполненных сепараторах ускорителя ДЦ-280 ЛЯР ОИЯИ. Из расчетов следует, что система транспортировки ускоренных ионов позволяет сформировать на мишени пучок диаметром 10 мм (4 σ). Дополнительно к этому руководствовались выдержкой из технического задания на изготовление и размещение газонаполненного соленоида GASSOL, в котором указано, что диаметр ионопровода перед мишенью равен 14,5 мм, а допуск на радиальное смещение оси пучка относительно магнитной оси соленоида составляет ± 1 мм. Возможность достижения большей чувствительности измерителя профиля тоже принималась во внимание. Чувствительность пропорциональна квадрату диаметра катода.

Пучок попадает на мозаику из некоторого количества катодов, обращенных торцом к направлению пучка. В качестве разделяющих изоляторов и держателей катодов выбраны керамические трубки из оксида алюминия Al₂O₃, которые собраны в некую конструкцию. Противоположные пучку концы катодов протачиваются и вставляются в трубки и в отверстия, образующиеся между трубками. С противоположного конца в трубки и отверстия вставляются медные проводники. Чтобы обеспечить механическую жесткость контактов, проводники имеют диаметр не менее 1 мм. К этим контактам припаиваются гибкие кабели, идущие к многоканальному измерителю тока. Электрический контакт между медными проводниками и катодами дублируется тонкими проводниками, проложенными вдоль их боковых поверхностей. Сборка трубок для лучшей теплоотдачи обрамлена рубашкой, изготовленной из меди.

Рис. 2. Схема размещения катодов в сборке из трубок, изготовленных из оксида алюминия Al₂O₃

Было собрано два варианта измерителей профиля на базе керамических трубок внешним диаметром 3 и 4 мм. В качестве катодов были использованы грифели диаметром 1,8 и 2,7 мм или алюминиевый провод сечением 2,5 и 4 мм². Расстояния между центрами катодов в собранных конструкциях составляли 2,1 и 2,8 мм. На рис.2 показана схема размещения катодов в сборке из трубок, изготовленных из оксида алюминия.

С помощью измерителей профиля, имеющих расстояния между центрами катодов 2,1 и 2,7 мм, контролируются области диаметрами 15 и 20 мм соответственно. Первый из них устанавливается вблизи мише-

ни, а второй выше по пучку, где размер пучка и диаметр ионопровода больше. С помощью двух разнесенных в пространстве измерителей будет контролироваться соосность пучка ионопроводу, ось которого, в свою очередь, при сборке установки должна совпадать с осью соленоида.

Перед катодами установлена сетка-анод, разделяющая в горизонтальном направлении ряды катодов, изготовленная из полосок тантала толщиной 0,1 мм. Плоскость полосок параллельна оси пучка. Местоположение сетки относительно катодов центрируется с использованием незанятых катодами трубок. Такая конструкция выбрана для достижения большей радиационной стойкости. Сетка изолирована, и на нее подано положительное напряжение для сбора электронов вторичной эмиссии.

Вся эта конструкция закрепляется на приводе, с помощью которого она вводится в пучок на время измерений. Для измерения токов с катодов решено воспользоваться 16-канальными усилителями. Было решено, что профиль пучка будет достаточно хорошо определен при измерении значений интенсивностей на поперечном сечении пучка в 31 точке с помощью соответствующего числа катодов. В этом случае для измерения токов достаточно воспользоваться двумя усилителями.

При нахождении такого измерителя профиля в газовой среде вдобавок к току вторичной эмиссии будет регистрироваться ток, возникающий от ионизации газа. Это приведет к повышению чувствительности.

Измерение тока с графитовых или алюминиевых катодов осуществляется с помощью модульной системы ввода/вывода SMARTBOX-6. Система состоит из двух модулей измерения тока II16-04 и модуля с интерфейсом Ethernet MCPU-02.

Модуль II16-04 имеет 16 измерительных входов и предназначен для измерения токов в диапазоне ± 1 нА. Общее время измерения по всем 16 каналам составляет 267 мс, разрешение АЦП — 16 бит, тип АЦП — «сигма-дельта».

Модуль MCPU-02 обеспечивает функционирование системы ввода/вывода SMARTBOX-6 и ее связь с системой управления ускорителя через Ethernet по протоколу TCP/IP. На компьютере установлена программа, созданная для визуализации профиля пучка.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ИЗМЕРИТЕЛЯ ПРОФИЛЯ ПУЧКА

Исследования характеристик измерителя профиля проводили, вводя его с помощью пневматического привода в пучок ионов ⁴⁰Ar⁺⁴ энергией 4 МэВ/нуклон, полученный на ускорителе У-400 ЛЯР ОИЯИ. Для экспе-

римента взят измеритель с расстоянием между центрами грифелей 2,1 мм. Фотография измерителя приведена на рис. 3.

Профиль пучка в реальном времени можно рассмотреть в виде значений токов, измеренных с каждого катода. Индикаторы на изображениях профиля указаны в соответствии с расположением катодов в измерителе. Профиль пучка представлен в виде 3D-графика с цветовой передачей значений тока. На рис. 4 приведены изображения профиля сфокусированного пучка, падающего на графитовые катоды при токе 0,625 нА частиц. Значения токов с катодов в отсутствие пучка в тех же единицах, что и на рис. 4, не превышают значений 5 · 10⁻⁵. Имея вблизи мишени профиль пучка, состоящий из 31 значения интенсивности пучка с шагом 2,1 мм, путем экстраполяции, которая заложена в про-

Рис. 3. Измеритель профиля пучка с расстоянием между центрами грифелей 2,1 мм

грамму визуализации, обеспечивают точность определения центра пучка ± 1 мм. Это значение находится в пределах заданного допуска на радиальное смещение оси пучка относительно магнитной оси соленоида.

Рис. 4. Изображения профиля (в графическом и индикаторном видах) при токе пучка 0,625 нА частиц, падающего на графитовые катоды

Измеритель профиля может быть использован только для относительного измерения тока пучка. Ток вторичной эмиссии зависит от многих факторов, например, вида и энергии пучка ускоренных ионов, материала, из которого изготовлены катоды, и состояния их поверхности. Поэтому определение экспериментальным путем нижней границы диапазона токов пучка, в котором он может использоваться для относительных измерений, может быть сделано только качественное. Одной из сложностей, с которой пришлось столкнуться для разрешения этой задачи, является отсутствие в нашем распоряжении каких-либо приборов, способных напрямую адекватно измерять ток пучка в требуемом диапазоне 0,01-0,1 нА частиц. Нижняя граница диапазона, в котором имеющиеся цилиндры Фарадея измеряют ток пучка, составляет 2 нА. Экстракция пучка из ускорителя У-400 осуществляется с помощью перезарядной фольги. Выведенный пучок ⁴⁰Ar с энергией 4 МэВ/нуклон имеет зарядность +16. Это означает, что с помощью цилиндра Фарадея невозможно проводить измерения тока пучка в диапазоне интенсивностей ниже 0,125 нА частиц. В то же время такой интенсивности соответствует поток частиц $0.75 \cdot 10^9 \text{ c}^{-1}$, а для детекторов, например сцинтилляторов или полупроводниковых, такой поток уже губителен. Эти детекторы могут быть использованы для определения нижней границы диапазона токов пучка, если этот поток каким-либо способом снизить и найти коэффициенты соответствия между показанием ЦФ, средним током с катодов монитора профиля пучка и скоростью счета, например, сцинтилляционного детектора в сниженном потоке. А затем, снижая интенсивность пучка, находить соответствия между средним током с катодов монитора и скоростью счета сцинтиллятора.

Для проведения такого эксперимента была использована установка на ускорителе У-400, предназначенная для испытания электронных схем [5]. На заднем фланце бокса, предназначенного для размещения тестируемой электроники, установлено девять органических сцинтилляционных детекторов. Монитор профиля пучка, для которого определялась нижняя гра-

Рис. 5. Пример измерений при одном из значений тока пучка. Слева результат измерения с помощью монитора профиля, а справа — девяти сцинтилляторов

ница диапазона, размещался в блоке диагностики для $\Pi \Phi$, установленном ближе к ускорителю на расстоянии 5,6 м от бокса сцинтилляторов. Перед монитором мог быть введен цилиндр Фарадея, с помощью которого измерялся ток пучка. Сразу за монитором размещалась фольга из тантала толщиной 5 мкм. Пучок после вывода из него ЦФ и монитора попадал на фольгу и с ее помощью рассеивался. За счет рассеяния плотность потока пучка, доходящего до области размещения сцинтилляционных детекторов, значительно снижалась. Максимальный счет при токе пучка на ЦФ 10 нА (0,625 нА частиц) не превышал $5 \cdot 10^5$ имп. c^{-1} для каждого из сцинтилляторов. Калибровка монитора осуществлялась путем сопоставления средней скорости счета по всем девяти детекторам и среднему току со всех катодов монитора пучка. Это позволяло минимизировать ошибку, особенно в области малых токов пучка. Измерения тока пучка проводились последовательно: сначала с помощью монитора профиля, а после его вывода с помощью сцинтилляторов. На рис. 5 показан пример измерений при одном из значений тока пучка. Слева результат измерения с помощью монитора профиля, а справа — девяти сцинтилляторов.

На рис. 6 приведен результат проведенной калибровки, начиная от максимального тока пучка 0,4 нА частиц. Статистическая ошибка измерений не превышает размеров точек. По точкам с результатами измерений проведена линейная экстраполяция. Основная часть отклонений результатов измерений от линии связана с колебаниями тока пучка во время последовательных измерений. Отклонения при низких токах обусловлены фоновыми токами в мониторе, связанными с некоторым загрязнением изоляторов. Из результатов, приведенных на рисунке, видно, что при снижении интенсивности пучка, начиная от 0,4 нА частиц, измерения с помощью монитора профиля как с графитовыми, так и с алюминиевыми катодами линейны в диапазоне трех порядков. Чувствительность измерений монитора с графитовыми катодами в 1,7 раза выше. Исходя из результатов этих измерений, можно предположить, что нижняя граница диапазона, в котором можно наблюдать профиль пучка с помощью созданного монитора, находится вблизи 0,001 нА частиц.

Рис. 6. Результат калибровки монитора профиля пучка, проведенной с помощью сцинтилляторов

При извлечении монитора профиля пучка не обнаружено никаких повреждений пучком ни катодов, ни сетки, что демонстрирует радиационную стойкость конструкции.

Была проверена возможность измерения профиля пучка и в режиме ионизационной камеры. В этом эксперименте пучок выводился из вакуумной камеры в атмосферу через окно диаметром 4 мм, закрытое алюминиевой фольгой толщиной 0,02 мм. Пучок перед окном был равномерно рассеян по большой площади, и плотность потока частиц в вакуумной камере измерялась с помощью сцинтилляционных детекторов, окружающих окно. Показания измерителя профиля еще можно было наблюдать при плотности потока $2 \cdot 10^3$ част./с.

РАСЧЕТ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУР В ИЗМЕРИТЕЛЕ ПРОФИЛЯ ПУЧКА

Измеритель профиля пучка подвергается разрушающему воздействию бомбардирующих его ионов. И если радиационная стойкость материалов, которые используются для изготовления измерителей профиля, довольно высокая, то в результате поглощения энергии пучка возникает нагревание. Нагревание может привести к расплаву материала катода или нарушению контактов с сигнальными кабелями. Для нахождения слабых мест конкретной конструкции проведены тепловые расчеты, которые позволят оценить верхнюю границу диапазона, в котором прибор может быть использован без повреждений. Расчет проведен для конструкции, в которой диаметр керамических трубок из оксида алюминия Al_2O_3 равен 3 мм; диаметры катодов как из графита, так и из алюминия равны 1,8 мм; длина проточенной части катода и вставленной в трубки — 7 мм, длина исходной и выступающей из трубок части — 2 мм.

Сигнальные кабели, идущие к измерителю профиля, для удобства подсоединения разнесены в пространстве. Для этого трубки имеют разную длину: в верхней части конструкции она равна 16 мм и, увеличиваясь с каждым следующим слоем на 2 мм, достигает 28 мм в нижней.

Медные проводники со стороны катодов имеют косой срез. Это предотвращает непосредственную передачу тепла с катода на медный проводник, за счет чего снижается температура места пайки кабелей.

Характеристики материалов, используемые в расчетах, приведены в таблице.

Параметр	Графит	Алюминий	Оксид Al_2O_3	Медь
Теплопроводность, Вт/(м · K)	$150 \cdot 300 \text{ K/}T$	237	35	400
Излучательная способность	0,8	0,2	0,4	0,8

Параметры материалов, используемые при расчетах

Расчеты проведены для случая бомбардировки пучком ионов ⁴⁸Ca⁺⁴ энергией 5 МэВ/нуклон, имеющим двумерное нормальное распределение ($\sigma_x = \sigma_y = 2,5$ мм) плотности потока на поперечном сечении, перпендикулярном оси пучка. Для расчета использовалась программа «COMSOL Multiphysics» версия «6.1». Коэффициент теплопроводности графита зависит от температуры и представлен в виде: λ [Вт/м · град] = 150 · 300 K/T, где T — температура в кельвинах. В расчетах учитывалось, что измеритель профиля размещается в атмосфере гелия при давлении 1 Па. Показано, что рассеяние поглощенной энергии пучка в основном происходит за счет излучения. За счет учета конвекции снижение температуры незначительно.

В результате расчета установлено, что слабым местом, которое определяет верхнюю границу диапазона измерения и работоспособность конкретной конструкции измерителя профиля, является температура контактов для подсоединения сигнальных кабелей. Здесь критической является температура плавления припоя. Результаты расчета распределений температур в измерителях профиля с графитовыми или алюминиевыми катодами приведены на рис. 7. Слева показано распределение температур в 3D-геометрии, а справа — в центральном сечении.

Из результатов расчета следует, что при использовании графитовых катодов довольно большая часть энергии рассеивается за счет излучения графита, нагревающегося до высокой температуры. Ток пучка 100 нА частиц можно считать верхней границей. Мощность пучка — 25 Вт. В этом случае температура концов медных проводников, к которым припаиваются сигнальные кабели, еще не достигает температуры плавления припоя. При использовании алюминиевых катодов при той же мощности пучка эта температура выше за счет большей теплопроводности алюминия. Как следует из результатов расчета, верхней границей применения таких измерителей профиля является ток 80 нА частиц, мощность пучка — 20 Вт.

Результаты расчетов касаются только конкретной конструкции. Например, значения верхней границы могут быть увеличены в два раза, если керамические трубки из оксида алюминия Al₂O₃ и соответствующие медные проводники удлинить на 20 мм. Максимальная температура катодов

Катоды из графита, пучок ионов 100 нА частиц

Катоды из алюминия, пучок ионов 80 нА частиц

Рис. 7. Результаты расчета распределения температур в измерителе профиля с катодами, изготовленными из графита или алюминия, при бомбардировке пучком ионов ${}^{48}\text{Ca}{}^{+8}$ с нормальным распределением ($\sigma_x = \sigma_y = 2,5$ мм) плотности потока, энергией 5 МэВ/нуклон. Слева показано распределение температур в 3D-геометрии, а справа — в центральном сечении

из алюминия или графита при увеличении мощности пучка в два раза изменится с 250 до 370 и с 350 до 550°С соответственно, что не критично для их целостности. Верхнюю границу можно поднять и другим путем, например, пайку заменить на другой способ создания надежных контактов с сигнальными кабелями.

ЗАКЛЮЧЕНИЕ

Создан и испытан измеритель профиля пучка, который будет использоваться на входе газонаполненного соленоида GASSOL при его запуске и настройке. Измеритель профиля изготовлен в виде мозаики из катодов, с каждого из которых измеряется ток, возникающий за счет вторичной эмиссии при бомбардировке его ускоренными ионами. С помощью привода измеритель вводится в пучок. Для измерения токов с катодов используется соответствующее число каналов усилителей тока. Создана программа для визуализации профиля пучка. В эксперименте на пучке ионов ⁴⁰Ar⁺⁴ энергией 4 МэВ/нуклон установлено, что нижняя граница чувствительности измерителя профиля ~ 0,001 нА частиц. Верхняя граница чувствительности была установлена путем проведения тепловых расчетов и составила 100 нА частиц и 80 нА частиц для измерителей с графитовым катодом и с алюминиевым катодом соответственно. Критической является вероятность нарушения контактов припаянных сигнальных кабелей в результате нагрева.

Точность определения центра пучка ± 1 мм находится в пределах заданного допуска на радиальное смещение оси пучка относительно магнитной оси соленоида. Планируется, что на GASSOL будет установлено два измерителя профиля, один из которых устанавливается вблизи мишени, а второй выше по пучку. С помощью двух разнесенных в пространстве измерителей будет контролироваться совпадение осей пучка и соленоида.

При проведении экспериментов не обнаружено никаких повреждений пучком, что демонстрирует радиационную стойкость конструкции в указанном диапазоне. При нахождении такого измерителя профиля в газовой среде он может вдобавок к вторичной эмиссии работать и в режиме ионизационной камеры.

Простота конструкции позволяет изготавливать измерители в широком диапазоне размеров и количества катодов.

Финансирование. Данная работа финансировалась за счет средств бюджета Объединенного института ядерных исследований. Никаких дополнительных грантов на проведение или руководство данным конкретным исследованием получено не было.

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Solovyev D. I., Kovrizhnykh N. D., Gulbekyan G. G., Kazarinov N. Y., Gikal K. B., Lisov V. I., Papenkov K. V. // NIM. 2023. V. 1052. P. 168263.
- Rafiei R., Hinde D.J., Dasgupta M., Weisser D.C., Muirhead A.G., Harding A.B., Cooper A.K., Wallace H.J., Lobanov N.R., Wakhle A., Brown M.L., Lin C.J., Horsley A.J., duRietz R., Luong D.H., Evers M. // NIM. 2011. V.631, Iss. 1. P. 12–21.
- 3. Тетерев Ю. Г., Крылов А. И., Исатов А. Т., Митрофанов С. В. // Приборы и техника эксперимента. 2020. № 3. С. 50–55.
- 4. Lisov V. I., Gulbekyan G. G., Bashevoy V. V., Eremin A. V., Ivanov G. N., Kalagin I. V., Kazacha V. I., Kazarinov N. Yu., Osipov N. F., Utenkov V. K. // RUPAC2018. Protvino, Russia, 2018. P. 272–275.
- Bogomolov S.L., Gulbekyan G.G., Skuratov V.A., Kalagin I.V., Mitrofanov S. V., Teterev Yu.G., Fomichev A.S., Anashin V.S. // 2015 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS). Moscow, Russia, 2015; https://doi.org/10.1109/ RADECS.2015.7365618.

Получено 22 января 2025 г.

Редактор М. И. Зарубина

Подписано в печать 07.02.2025. Формат 60 × 90/16. Бумага офсетная. Печать цифровая. Усл. печ. л. 0,75. Уч.-изд. л. 0,87. Тираж 110 экз. Заказ № 61033.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/